an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

Overview

3d-ken-burns

This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates this still image with a virtual camera scan and zoom subject to motion parallax. Should you be making use of our work, please cite our paper [1].

Paper

setup

Several functions are implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository. Please also make sure to have the CUDA_HOME environment variable configured.

In order to generate the video results, please also make sure to have pip install moviepy installed.

usage

To run it on an image and generate the 3D Ken Burns effect fully automatically, use the following command.

python autozoom.py --in ./images/doublestrike.jpg --out ./autozoom.mp4

To start the interface that allows you to manually adjust the camera path, use the following command. You can then navigate to http://localhost:8080/ and load an image using the button on the bottom right corner. Please be patient when loading an image and saving the result, there is a bit of background processing going on.

python interface.py

To run the depth estimation to obtain the raw depth estimate, use the following command. Please note that this script does not perform the depth adjustment, see #22 for information on how to add it.

python depthestim.py --in ./images/doublestrike.jpg --out ./depthestim.npy

To benchmark the depth estimation, run python benchmark-ibims.py or python benchmark-nyu.py. You can use it to easily verify that the provided implementation runs as expected.

colab

If you do not have a suitable environment to run this projects then you could give Colab a try. It allows you to run the project in the cloud, free of charge. There are several people who provide Colab notebooks that should get you started. A few that I am aware of include one from Arnaldo Gabriel, one from Vlad Alex, and one from Ahmed Harmouche.

dataset

This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

scene mode color depth normal
asdf flying 3.7 GB 1.0 GB 2.9 GB
asdf walking 3.6 GB 0.9 GB 2.7 GB
blank flying 3.2 GB 1.0 GB 2.8 GB
blank walking 3.0 GB 0.9 GB 2.7 GB
chill flying 5.4 GB 1.1 GB 10.8 GB
chill walking 5.2 GB 1.0 GB 10.5 GB
city flying 0.8 GB 0.2 GB 0.9 GB
city walking 0.7 GB 0.2 GB 0.8 GB
environment flying 1.9 GB 0.5 GB 3.5 GB
environment walking 1.8 GB 0.5 GB 3.3 GB
fort flying 5.0 GB 1.1 GB 9.2 GB
fort walking 4.9 GB 1.1 GB 9.3 GB
grass flying 1.1 GB 0.2 GB 1.9 GB
grass walking 1.1 GB 0.2 GB 1.6 GB
ice flying 1.2 GB 0.2 GB 2.1 GB
ice walking 1.2 GB 0.2 GB 2.0 GB
knights flying 0.8 GB 0.2 GB 1.0 GB
knights walking 0.8 GB 0.2 GB 0.9 GB
outpost flying 4.8 GB 1.1 GB 7.9 GB
outpost walking 4.6 GB 1.0 GB 7.4 GB
pirates flying 0.8 GB 0.2 GB 0.8 GB
pirates walking 0.7 GB 0.2 GB 0.8 GB
shooter flying 0.9 GB 0.2 GB 1.1 GB
shooter walking 0.9 GB 0.2 GB 1.0 GB
shops flying 0.2 GB 0.1 GB 0.2 GB
shops walking 0.2 GB 0.1 GB 0.2 GB
slums flying 0.5 GB 0.1 GB 0.8 GB
slums walking 0.5 GB 0.1 GB 0.7 GB
subway flying 0.5 GB 0.1 GB 0.9 GB
subway walking 0.5 GB 0.1 GB 0.9 GB
temple flying 1.7 GB 0.4 GB 3.1 GB
temple walking 1.7 GB 0.3 GB 2.8 GB
titan flying 6.2 GB 1.1 GB 11.5 GB
titan walking 6.0 GB 1.1 GB 11.3 GB
town flying 1.7 GB 0.3 GB 3.0 GB
town walking 1.8 GB 0.3 GB 3.0 GB
underland flying 5.4 GB 1.2 GB 12.1 GB
underland walking 5.1 GB 1.2 GB 11.4 GB
victorian flying 0.5 GB 0.1 GB 0.8 GB
victorian walking 0.4 GB 0.1 GB 0.7 GB
village flying 1.6 GB 0.3 GB 2.8 GB
village walking 1.6 GB 0.3 GB 2.7 GB
warehouse flying 0.9 GB 0.2 GB 1.5 GB
warehouse walking 0.8 GB 0.2 GB 1.4 GB
western flying 0.8 GB 0.2 GB 0.9 GB
western walking 0.7 GB 0.2 GB 0.8 GB

Please note that this is an updated version of the dataset that we have used in our paper. So while it has fewer scenes in total, each sample capture now has a varying focal length which should help with generalizability. Furthermore, some examples are either over- or under-exposed and it would be a good idea to remove these outliers. Please see #37, #39, and #40 for supplementary discussions.

video

Video

license

This is a project by Adobe Research. It is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

references

[1]  @article{Niklaus_TOG_2019,
         author = {Simon Niklaus and Long Mai and Jimei Yang and Feng Liu},
         title = {3D Ken Burns Effect from a Single Image},
         journal = {ACM Transactions on Graphics},
         volume = {38},
         number = {6},
         pages = {184:1--184:15},
         year = {2019}
     }

acknowledgment

The video above uses materials under a Creative Common license or with the owner's permission, as detailed at the end.

Owner
Simon Niklaus
Research Scientist at Adobe
Simon Niklaus
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022