Deep reinforcement learning library built on top of Neural Network Libraries

Overview

License Build status

Deep Reinforcement Learning Library built on top of Neural Network Libraries

NNablaRL is a deep reinforcement learning library built on top of Neural Network Libraries that is intended to be used for research, development and production.

Installation

Installing NNablaRL is easy!

$ pip install nnabla-rl

NNablaRL only supports Python version >= 3.6 and NNabla version >= 1.17.

Enabling GPU accelaration (Optional)

NNablaRL algorithms run on CPU by default. To run the algorithm on GPU, first install nnabla-ext-cuda as follows. (Replace [cuda-version] depending on the CUDA version installed on your machine.)

$ pip install nnabla-ext-cuda[cuda-version]
# Example installation. Supposing CUDA 11.0 is installed on your machine.
$ pip install nnabla-ext-cuda110

After installing nnabla-ext-cuda, set the gpu id to run the algorithm on through algorithm's configuration.

import nnabla_rl.algorithms as A

config = A.DQNConfig(gpu_id=0) # Use gpu 0. If negative, will run on CPU.
dqn = A.DQN(env, config=config)
...

Features

Friendly API

NNablaRL has friendly Python APIs which enables to start training with only 3 lines of python code.

import nnabla_rl
import nnabla_rl.algorithms as A
from nnabla_rl.utils.reproductions import build_atari_env

env = build_atari_env("BreakoutNoFrameskip-v4") # 1
dqn = A.DQN(env)  # 2
dqn.train(env)  # 3

To get more details about NNablaRL, see documentation and examples.

Many builtin algorithms

Most of famous/SOTA deep reinforcement learning algorithms, such as DQN, SAC, BCQ, GAIL, etc., are implemented in NNablaRL. Implemented algorithms are carefully tested and evaluated. You can easily start training your agent using these verified implementations.

For the list of implemented algorithms see here.

You can also find the reproduction and evaluation results of each algorithm here.
Note that you may not get completely the same results when running the reproduction code on your computer. The result may slightly change depending on your machine, nnabla/nnabla-rl's package version, etc.

Seemless switching of online and offline training

In reinforcement learning, there are two main training procedures, online and offline, to train the agent. Online training is a training procedure that executes both data collection and network update alternately. Conversely, offline training is a training procedure that updates the network using only existing data. With NNablaRL, you can switch these two training procedures seemlessly. For example, as shown below, you can easily train a robot's controller online using simulated environment and finetune it offline with real robot dataset.

import nnabla_rl
import nnabla_rl.algorithms as A

simulator = get_simulator() # This is just an example. Assuming that simulator exists
dqn = A.DQN(simulator)
# train online for 1M iterations
dqn.train_online(simulator, total_iterations=1000000)

real_data = get_real_robot_data() # This is also an example. Assuming that you have real robot data
# fine tune the agent offline for 10k iterations using real data
dqn.train_offline(real_data, total_iterations=10000)

Getting started

Try below interactive demos to get started.
You can run it directly on Colab from the links in the table below.

Title Notebook Target RL task
Simple reinforcement learning training to get started Open In Colab Pendulum
Learn how to use training algorithms Open In Colab Pendulum
Learn how to use customized network model for training Open In Colab Mountain car
Learn how to use different network solver for training Open In Colab Pendulum
Learn how to use different replay buffer for training Open In Colab Pendulum
Learn how to use your own environment for training Open In Colab Customized environment
Atari game training example Open In Colab Atari games

Documentation

Full documentation is here.

Contribution guide

Any kind of contribution to NNablaRL is welcome! See the contribution guide for details.

License

NNablaRL is provided under the Apache License Version 2.0 license.

Comments
  • Update cem function interface

    Update cem function interface

    Updated interface of cross entropy function methods. The args, pop_size is now changed to sample_size. In addition, the given objective function to CEM function will be called with variable x which has (batch_size, sample_size, x_dim). This is different from previous interface. If you want to know the details, please see the function docs.

    opened by sbsekiguchi 1
  • Add implementation for RNN support and DRQN algorithm

    Add implementation for RNN support and DRQN algorithm

    Add RNN model support and DRQN algorithm.

    Following trainers will support RNN-model.

    • Q value-based trainers
    • Deterministic gradient and Soft policy trainers

    Other trainers can support RNN models in future but is not implemented in the initial release.

    See this paper for the details of the DRQN algorithm.

    opened by ishihara-y 1
  • Implement SACD

    Implement SACD

    This PR implements SAC-D algorithm. https://arxiv.org/abs/2206.13901

    These changes have been made:

    • New environments with factored reward functions have been added
      • FactoredLunarLanderContinuousV2NNablaRL-v1
      • FactoredAntV4NNablaRL-v1
      • FactoredHopperV4NNablaRL-v1
      • FactoredHalfCheetahV4NNablaRL-v1
      • FactoredWalker2dV4NNablaRL-v1
      • FactoredHumanoidV4NNablaRL-v1
    • SACD algorithms has been added
    • SoftQDTrainer has been added
    • _InfluenceMetricsEvaluator has been added
    • reproduction script has been added (not benchmarked yet)

    visualizing influence metrics

    import gym
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    eval_env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    
    evaluation_hook = H.EvaluationHook(
        eval_env,
        EpisodicEvaluator(run_per_evaluation=10),
        timing=5000,
        writer=W.FileWriter(outdir="logdir", file_prefix='evaluation_result'),
    )
    iteration_num_hook = H.IterationNumHook(timing=100)
    
    config = A.SACDConfig(gpu_id=0, reward_dimension=9)
    sacd = A.SACD(env, config=config)
    sacd.set_hooks([iteration_num_hook, evaluation_hook])
    sacd.train_online(env, total_iterations=100000)
    
    influence_history = []
    
    state = env.reset()
    while True:
        action = sacd.compute_eval_action(state)
        influence = sacd.compute_influence_metrics(state, action)
        influence_history.append(influence)
        state, _, done, _ = env.step(action)
        if done:
            break
    
    influence_history = np.array(influence_history)
    for i, label in enumerate(["position", "velocity", "angle", "left_leg", "right_leg", "main_eingine", "side_engine", "failure", "success"]):
        plt.plot(influence_history[:, i], label=label)
    plt.xlabel("step")
    plt.ylabel("influence metrics")
    plt.legend()
    plt.show()
    

    image

    sample animation

    sample

    opened by ishihara-y 0
  • Add gmm and Update gaussian

    Add gmm and Update gaussian

    Added gmm and gaussian of the numpy models. In addition, updated the gaussian distribution's API.

    The API change is like following:

    Previous :

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    distribution = D.Gaussian(mean, ln_var)
    # return nn.Variable
    assert isinstance(distribution.sample(), nn.Variable)
    

    Updated:

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    # You have to pass the nn.Variable if you want to get nn.Variable as all class method's return.
    distribution = D.Gaussian(nn.Variable.from_numpy_array(mean), nn.Variable.from_numpy_array(ln_var))
    assert isinstance(distribution.sample(), nn.Variable)
    
    # If you pass np.ndarray, then all class methods return np.ndarray
    # Currently, only support without batch shape (i.e. mean.shape = (dims,), ln_var.shape = (dims, dims)).
    distribution = D.Gaussian(mean[0], np.diag(ln_var[0]))  # without batch
    assert isinstance(distribution.sample(), np.ndarray)
    
    opened by sbsekiguchi 0
  • Support nnabla-browser

    Support nnabla-browser

    • [x] add MonitorWriter
    • [x] save computational graph as nntxt

    example

    import gym
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    # save training computational graph
    training_graph_hook = H.TrainingGraphHook(outdir="test")
    
    # evaluation hook with nnabla's Monitor
    eval_env = gym.make("Pendulum-v0")
    evaluator = EpisodicEvaluator(run_per_evaluation=10)
    evaluation_hook = H.EvaluationHook(
        eval_env,
        evaluator,
        timing=10,
        writer=W.MonitorWriter(outdir="test", file_prefix='evaluation_result'),
    )
    
    env = gym.make("Pendulum-v0")
    sac = A.SAC(env)
    sac.set_hooks([training_graph_hook, evaluation_hook])
    
    sac.train_online(env, total_iterations=100)
    

    image image

    opened by ishihara-y 0
  • Add iLQR and LQR

    Add iLQR and LQR

    Implementation of Linear Quadratic Regulator (LQR) and iterative LQR algorithms.

    Co-authored-by: Yu Ishihara [email protected] Co-authored-by: Shunichi Sekiguchi [email protected]

    opened by ishihara-y 0
  • Check np_random instance and use correct randint alternative

    Check np_random instance and use correct randint alternative

    I am not sure when this change was made but in some environment, gym.unwrapped.np_random returns Generator instead of RandomState.

    # in case of RandomState
    # this line works
    gym.unwrapped.np_random.rand_int(...)
    # in case of Generator
    # rand_int does not exist and we must use integers as an alternative
    gym.unwrapped.np_random.integers(...)
    

    This PR will fix this issue and chooses correct function for sampling integers.

    opened by ishihara-y 0
  • Add icra2018 qtopt

    Add icra2018 qtopt

    opened by sbsekiguchi 0
Releases(v0.12.0)
Owner
Sony
Sony Group Corporation
Sony
A small repository with convenience functions for working with the Notion API.

Welcome! Within this respository are a few convenience functions to assist with the pulling and pushing of data from the Notion API.

10 Jul 09, 2022
A simple python oriented telegram bot to give out creative font style's

Font-Bot A simple python oriented telegram bot to give out creative font style's REQUIREMENTS tgcrypto pyrogram==1.2.9 Installation Fork this reposito

BL4CK H47 4 Jan 30, 2022
A Python wrapper for the QQ Channel API

A Python wrapper for the QQ Channel API

Fox_white 55 Dec 07, 2022
a harbinger of events or things.

Herald: Intrusion Detection System using IR and ML Herald - noun; a harbinger of events or things. Overview Herald is an intrusion detection system us

Muhammad Muzzammil 4 Jun 07, 2021
Spore REST API asyncio client

Spore REST API asyncio client

LEv145 16 Aug 02, 2022
With Google Drive API. My computer and my phone are in love now.

Channel trought Google Drive Google Drive API In this case, "Google Drive App" is the program. To install everything you need(has some extra things),

Luis Quiñones Requelme 1 Dec 15, 2021
Paginator for Dis-Snek Python Discord API wrapper

snek-paginator Paginator for Dis-Snek Python Discord API wrapper Installation: pip install -U snek-paginator Basic Example: from dis_snek.client impo

1 Nov 04, 2021
a discord bot for searching your movies, and bot return movie url for you :)

IMDb Discord Bot how to run this bot. the first step you must create prefixes.json file the second step you must create a virtualenv if you use window

Mehdi Radfar 6 Dec 20, 2022
Okaeri Robot: a modular bot running on python3 with anime theme and have a lot features

OKAERI ROBOT Okaeri Robot is a modular bot running on python3 with anime theme a

Dream Garden (rey) 2 Jan 19, 2022
Cogs for RedDiscord-Bot V3

Cogs v3 Disclaimer: This is an unapproved repo, meaning no one has formally reviewed this repo yet and any loss of data in your bot isn't my fault (An

Honkertonken 5 Nov 17, 2022
CoWIN Vaccination slot booking telegram bot with auto captcha resolver & alerting feature.Now, never miss a slot.

COWIN VACCINATION SLOT AUTO BOOKING (Bot with captcha solving & alerting capabilities. Never miss the vaccine slot.) June-10-2021/ 0030 hrs: 23 succes

Shashank Bafna 17 Nov 12, 2022
Ulaavi for nuke, helps to keep our stocl elements organised.

Ulaavi Ulaavi for nuke, helps to keep our stock elements organised. Installation Downlaod ffmpeg from ffmpeg.org linux : https://johnvansickle.com/ffm

Arun Subramaniyam 17 Aug 24, 2022
The Official Twilio SendGrid Led, Community Driven Python API Library

The default branch name for this repository has been changed to main as of 07/27/2020. This library allows you to quickly and easily use the SendGrid

Twilio SendGrid 1.4k Jan 07, 2023
A simple tool that lets you know when you are out of Lost Ark's queues

Overview A simple tool that lets you know when you are out of Lost Ark's queues. You can be notified via: Sound: the app will play a sound Discord web

Nelson 3 Feb 15, 2022
An Open Source ALL-In-One Telegram RoBot, that can do lot of things.

An Open Source ALL-In-One Telegram RoBot, that can do lot of things.

JOBIN 0 Dec 01, 2021
This script books automatically a slot on Doctolib in one of the public vaccination centers in Berlin.

BOOKING IN BERLINS VACCINATION CENTERS This python script books automatically a slot on Doctolib in one of the public vaccination centers in Berlin. T

17 Jan 13, 2022
Tomli is a Python library for parsing TOML

Tomli A lil' TOML parser Table of Contents generated with mdformat-toc Intro Installation Usage Parse a TOML string Parse a TOML file Handle invalid T

Taneli Hukkinen 315 Jan 04, 2023
Código para trabalho com o dataset Wine em Python

Um perceptron multicamadas (MLP) é uma rede neural artificial feedforward que gera um conjunto de saídas a partir de um conjunto de entradas. Um MLP é

Hemili Beatriz 1 Jan 08, 2022
Intelligent Trading Bot: Automatically generating signals and trading based on machine learning and feature engineering

Intelligent Trading Bot: Automatically generating signals and trading based on machine learning and feature engineering

Alexandr Savinov 326 Jan 03, 2023
Discord Token Finder - Find half of your target's token with just their ID.

Discord Token Finder - Find half of your target's token with just their ID.

Ttawi 2 Apr 07, 2022