Motion planning environment for Sampling-based Planners

Overview

Sampling-Based Motion Planners' Testing Environment

Python version CI Build docs Code style: black License DOI

Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quickly test different sampling-based algorithms for motion planning. sbp-env focuses on the flexibility of tinkering with different aspects of the framework, and had divided the main planning components into two categories (i) samplers and (ii) planners.

The focus of motion planning research had been mainly on (i) improving the sampling efficiency (with methods such as heuristic or learned distribution) and (ii) the algorithmic aspect of the planner using different routines to build a connected graph. Therefore, by separating the two components one can quickly swap out different components to test novel ideas.

Have a look at the documentations for more detail information. If you are looking for the previous code for the RRdT* paper it is now archived at soraxas/rrdt.

Installation

Optional

I recommend first creates a virtual environment with

# assumes python3 and bash shell
python -m venv sbp_env
source sbp_env/bin/activate

Install dependencies

You can install all the needed packages with pip.

pip install -r requirements.txt

There is also an optional dependency on klampt if you want to use the 3D simulator. Refer to its installation guide for details.

Quick Guide

You can get a detailed help message with

python main.py --help

but the basic syntax is

python main.py <PLANNER> <MAP> [options]

It will open a new window that display a map on it. Every white pixel is assumed to be free, and non-white pixels are obstacles. You will need to use your mouse to select two points on the map, the first will be set as the starting point and the second as the goal point.

Demos

Run maps with different available Planners

This repository contains a framework to performs quick experiments for Sampling-Based Planners (SBPs) that are implemented in Python. The followings are planners that had implemented and experimented in this framework.

Note that the commands shown in the respective demos can be customised with additional options. In fact, the actual command format used for the demonstrations is

python main.py <PLANNER> maps/room1.png start <sx>,<sy> goal <sx>,<sy> -vv

to have a fix set of starting and goal points for consistent visualisation, but we omitted the start/goal options in the following commands for clarity.

RRdT*

python main.py rrdt maps/room1.png -vv

RRdT* Planner

RRT*

python main.py rrt maps/room1.png -vv

RRT* Planner

Bi-RRT*

python main.py birrt maps/room1.png -vv

Bi-RRT* Planner

Informed RRT*

python main.py informedrrt maps/room1.png -vv

Informed RRT* Planner

The red ellipse shown is the dynamic sampling area for Informed RRT*

Others

There are also some other planners included in this repository. Some are preliminary planner that inspired RRdT*, some are planners with preliminary ideas, and some are useful for debugging.

Reference to this repository

You can use the following citation if you use this repository for your research

@article{lai2021SbpEnv,
  doi = {10.21105/joss.03782},
  url = {https://doi.org/10.21105/joss.03782},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {66},
  pages = {3782},
  author = {Tin Lai},
  title = {sbp-env: A Python Package for Sampling-based Motion Planner and Samplers},
  journal = {Journal of Open Source Software}
}
Comments
  • question on (example) usage

    question on (example) usage

    According to the submitted paper, with sbp-env "one can quickly swap out different components to test novel ideas" and "validate ... hypothesis rapidly". However, from the examples in the documentation, it is unclear to me how I can obtain performance metrics on the planners when a run a test.

    Is there a way to save such metrics to a file or print them when running planners in sbp-env? If not, this might be a nice feature to implement in a future version. Otherwise, you could consider adding an example to the documentation on how to compare different planners in the same scenario.

    (this question is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 5
  • Path recognition issue

    Path recognition issue

    I tried some source, destination positions with the following command and there seems some issue in recognition of the path. python main.py rrt maps/4d.png --engine 4d

    Attaching screenshot below: Screenshot from 2021-10-07 00-43-15

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Python version compatibility with scipy

    Python version compatibility with scipy

    Mentioning the requirement of python version >= 3.8 in README would also help users the way it's done over here. Python versions < 3.8 are not compatible with scipy 1.6

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Suggestion to make installation easier

    Suggestion to make installation easier

    I was wondering why you have the following remark block in your installation instructions: image

    I think it would be easier to add those two packages to the file requirements_klampt.txt. That way they'll be installed automatically, it saves the user an extra action. Or is there any reason I'm missing why that shouldn't be done?

    opened by OlgerSiebinga 3
  • Exception after running the example from the documentation

    Exception after running the example from the documentation

    When I run the example from the quick start page in the documentation, an exception occurs.

    The command: python main.py rrt maps/room1.png

    The exception:

    Traceback (most recent call last):
      File "main.py", line 287, in <module>
        environment.run()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 198, in run
        self.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\visualiser.py", line 148, in terminates_hook
        self.env_instance.sampler.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 126, in __getattr__
        return object.__getattribute__(self.visualiser, attr)
    AttributeError: 'PygameEnvVisualiser' object has no attribute 'sampler'
    

    The exception only occurs after the simulation has finished so it seems like a minor problem. Although I'm not really sure what happens at env.py, line 126, in __getattr__ and why. So, I don't have a proposed fix.

    opened by OlgerSiebinga 2
  • invalid start and goal point can be specified with command-line interface

    invalid start and goal point can be specified with command-line interface

    When specifying a goal and start point in the commands line, it is possible to specify invalid points. Specifying an invalid start and goal will result in an infinite loop.

    For example, running: python main.py rrt maps\room1.png start 10,10 goal 15,15, will result in an infinite loop with the following GUI:

    image

    Expected behavior when supplying an invalid option would be an exception.

    opened by OlgerSiebinga 1
  • Test Instructions

    Test Instructions

    Though it's standard, adding instruction to run tests in the documentation might be helpful for users wanting to contribute.

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 1
  • Graph building of prm planner without user information

    Graph building of prm planner without user information

    The graph building method in the prm planner (build_graph() in prmPlanner.py) can take quite some time when a large number of nodes is used. However, the user is not notified that the planner is still processing data. The first time I encountered this, I suspected the software got stuck in an infinite loop because the window was not responding anymore. I think this can be easily fixed by adding a tqdm bar in the build_graph() method (at line 83)

    (this suggestion is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 1
  • Skip-optimality Problem

    Skip-optimality Problem

    Hi 1.I am wonderingt that the parameter (use_rtree)in choose_least_cost_parent() function and rewire() funtion (RRT). Is it no longer necessary because we use numpy's calculation method? 2. When i run the informedrrt algorithm, the ellipse display of the graphic drawing does not appear as shown in the document. How can it be displayed? I'm sorry to interrupt you from your busy schedule.

    opened by Jiawei-00 7
Releases(v2.0.1)
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022