DaCeML - Machine learning powered by data-centric parallel programming.

Overview

CPU CI GPU CI codecov Documentation Status

DaCeML

Machine learning powered by data-centric parallel programming.

This project adds PyTorch and ONNX model loading support to DaCe, and adds ONNX operator library nodes to the SDFG IR. With access to DaCe's rich transformation library and productive development environment, DaCeML can generate highly efficient implementations that can be executed on CPUs, GPUs and FPGAs.

The white box approach allows us to see computation at all levels of granularity: from coarse operators, to kernel implementations, and even down to every scalar operation and memory access.

IR visual example

Read more: Library Nodes

Integration

Converting PyTorch modules is as easy as adding a decorator...

@dace_module
class Model(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 4, kernel_size)
        self.conv2 = nn.Conv2d(4, 4, kernel_size)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

... and ONNX models can also be directly imported using the model loader:

model = onnx.load(model_path)
dace_model = ONNXModel("mymodel", model)

Read more: PyTorch Integration and Importing ONNX models.

Training

DaCeML modules support training using a symbolic automatic differentiation engine:

import torch.nn.functional as F
from daceml.pytorch import dace_module

@dace_module(backward=True)
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 120)
        self.fc2 = nn.Linear(120, 32)
        self.fc3 = nn.Linear(32, 10)
        self.ls = nn.LogSoftmax(dim=-1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        x = self.ls(x)
        return x

x = torch.randn(8, 784)
y = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7], dtype=torch.long)

model = Net()

criterion = nn.NLLLoss()
prediction = model(x)
loss = criterion(prediction, y)
# gradients can flow through model!
loss.backward()

Read more: Automatic Differentiation.

Library Nodes

DaCeML extends the DaCe IR with machine learning operators. The added nodes perform computation as specificed by the ONNX specification. DaCeML leverages high performance kernels from ONNXRuntime, as well as pure SDFG implementations that are introspectable and transformable with data centric transformations.

The nodes can be used from the DaCe python frontend.

import dace
import daceml.onnx as donnx
import numpy as np

@dace.program
def conv_program(X_arr: dace.float32[5, 3, 10, 10],
                 W_arr: dace.float32[16, 3, 3, 3]):
    output = dace.define_local([5, 16, 4, 4], dace.float32)
    donnx.ONNXConv(X=X_arr, W=W_arr, Y=output, strides=[2, 2])
    return output

X = np.random.rand(5, 3, 10, 10).astype(np.float32)
W = np.random.rand(16, 3, 3, 3).astype(np.float32)

result = conv_program(X_arr=X, W_arr=W)

Setup

The easiest way to get started is to run

make install

This will setup DaCeML in a newly created virtual environment.

For more detailed instructions, including ONNXRuntime installation, see Installation.

Development

Common development tasks are automated using the Makefile. See Development for more information.

stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022