Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Overview

Selection via Proxy: Efficient Data Selection for Deep Learning

This repository contains a refactored implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

If you use this code in your research, please use the following BibTeX entry.

@inproceedings{
    coleman2020selection,
    title={Selection via Proxy: Efficient Data Selection for Deep Learning},
    author={Cody Coleman and Christopher Yeh and Stephen Mussmann and Baharan Mirzasoleiman and Peter Bailis and Percy Liang and Jure Leskovec and Matei Zaharia},
    booktitle={International Conference on Learning Representations},
    year={2020},
    url={https://openreview.net/forum?id=HJg2b0VYDr}
}

The original code is also available as a zip file, but lacks documentation, uses outdated packages, and won't be maintained. Please use this repository instead and report issues here.

Setup

Prerequisites

Installation

git clone https://github.com/stanford-futuredata/selection-via-proxy.git
cd selection-via-proxy
pip install -e .

or simply

pip install git+https://github.com/stanford-futuredata/selection-via-proxy.git

Quickstart

Perform active learning on CIFAR10 from the command line:

python -m svp.cifar active

Or from the python interpreter:

from svp.cifar.active import active
active()

"Selection via proxy" happens when --proxy-arch doesn't match --arch:

# ResNet20 selecting data for a ResNet164
python -m svp.cifar active --proxy-arch preact20 --arch preact164

For help, see python -m svp.cifar active --help or active()'s docstrinng.

Example Usage

Below are more examples of the command line interface that cover different datasets (e.g., CIFAR100, ImageNet, Amazon Review Polarity) and commands (e.g., train, coreset).

Basic Training

CIFAR10 and CIFAR100

Preliminaries

None. The CIFAR10 and CIFAR100 datasets will download if they don't exist in ./data/cifar10 and ./data/cifar100 respectively.

Examples
# Train ResNet164 with pre-activation (https://arxiv.org/abs/1603.05027) on CIFAR10.
python -m svp.cifar train --dataset cifar10 --arch preact164

Replace --dataset CIFAR10 with --dataset CIFAR100 to run on CIFAR100 rather than CIFAR10.

# Train ResNet164 with pre-activation (https://arxiv.org/abs/1603.05027) on CIFAR100.
python -m svp.cifar train --dataset cifar100 --arch preact164

The same is true for all the python -m svp.cifar commands below

ImageNet

Preliminaries
  • Download the ImageNet dataset into a directory called imagenet.
  • Extract the images.
# Extract train data.
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
# Extract validation data.
cd ../ && mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash
  • Replace /path/to/data in all the python -m svp.imagenet commands below with the path to the imagenet directory you created. Note, do not include imagenet in the path; the script will automatically do that.
Examples
# Train ResNet50 (https://arxiv.org/abs/1512.03385).
python -m svp.imagenet train --dataset-dir '/path/to/data' --arch resnet50 --num-workers 20

For convenience, you can use larger batch sizes and scale learning rates according to "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour" with --scale-learning-rates:

# Train ResNet50 with a batch size of 1048 and scaled learning rates accordingly.
python -m svp.imagenet train --dataset-dir '/path/to/data' --arch resnet50 --num-workers 20 \
    --batch-size 1048 --scale-learning-rates

Mixed precision training is also supported using apex. Apex isn't installed during the pip install instructions above, so please follow the installation instructions in the apex repository before running the command below.

# Use mixed precision training to train ResNet50 with a batch size of 1048 and scale learning rates accordingly.
python -m svp.imagenet train --dataset-dir '/path/to/data' --arch resnet50 --num-workers 20 \
    --batch-size 1048 --scale-learning-rates --fp16

Amazon Review Polarity and Full

Preliminaries
tar -xvzf amazon_review_full_csv.tar.gz
tar -xvzf amazon_review_polarity_csv.tar.gz
  • Replace /path/to/data in all the python -m svp.amazon commands below with the path to the root directory you created. Note, do not include amazon_review_full_csv or amazon_review_polarity_csv in the path; the script will automatically do that.
Examples
# Train VDCNN29 (https://arxiv.org/abs/1606.01781) on Amazon Review Polarity.
python -m svp.amazon train --datasets-dir '/path/to/data' --dataset amazon_review_polarity --arch vdcnn29-conv \
    --num-workers 4 --eval-num-workers 8

Replace --dataset amazon_review_polarity with --dataset amazon_review_full to run on Amazon Review Full rather than Amazon Review Polarity.

# Train VDCNN29 (https://arxiv.org/abs/1606.01781) on Amazon Review Full.
python -m svp.amazon train --datasets-dir '/path/to/data' --dataset amazon_review_full --arch vdcnn29-maxpool \
    --num-workers 4 --eval-num-workers 8

The same is true for all the python -m svp.amazon commands below

Active learning

Active learning selects points to label from a large pool of unlabeled data by repeatedly training a model on a small pool of labeled data and selecting additional examples to label based on the model’s uncertainty (e.g., the entropy of predicted class probabilities) or other heuristics. The commands below demonstrate how to perform active learning on CIFAR10, CIFAR100, ImageNet, Amazon Review Polarity and Amazon Review Full with a variety of models and selection methods.

CIFAR10 and CIFAR100

Baseline Approach
# Perform active learning with ResNet164 for both selection and the final predictions.
python -m svp.cifar active --dataset cifar10 --arch preact164 --num-workers 4 \
	--selection-method least_confidence \
	--initial-subset 1000 \
	--round 4000 \
	--round 5000 \
	--round 5000 \
	--round 5000 \
	--round 5000
Selection via Proxy

If the model architectures (arch vs proxy_arch) or the learning rate schedules don't match, "selection via proxy" (SVP) is performed and two separate models are trained. The proxy is used for selecting which examples to label, while the target is only used for evaluating the quality of the selection. By default, the target model (arch) is trained and evaluated after each selection round. To change this behavior set eval_target_at to evaluate at a specific labeling budget(s) or set train_target to False to skip evaluating the target model.

# Perform active learning with ResNet20 for selection and ResNet164 for the final predictions.
python -m svp.cifar active --dataset cifar10 --arch preact164 --num-workers 4 \
	--selection-method least_confidence --proxy-arch preact20 \
	--initial-subset 1000 \
	--round 4000 \
	--round 5000 \
	--round 5000 \
	--round 5000 \
	--round 5000 \
	--eval-target-at 25000

To train the proxy for fewer epochs, use the --proxy-* options as shown below:

# Perform active learning with ResNet20 after only 50 epochs for selection.
python -m svp.cifar active --dataset cifar10 --arch preact164 --num-workers 4 \
	--selection-method least_confidence --proxy-arch preact20 \
	--proxy-learning-rate 0.01 --proxy-epochs 1 \
	--proxy-learning-rate 0.1 --proxy-epochs 45 \
	--proxy-learning-rate 0.01 --proxy-epochs 4 \
	--initial-subset 1000 \
	--round 4000 \
	--round 5000 \
	--round 5000 \
	--round 5000 \
	--round 5000 \
	--eval-target-at 25000

ImageNet

Baseline Approach
# Perform active learning with ResNet50 for both selection and the final predictions.
python -m svp.imagenet active --datasets-dir '/path/to/data' --arch resnet50 --num-workers 20
Selection via Proxy

If the model architectures (arch vs proxy_arch) or the learning rate schedules don't match, "selection via proxy" (SVP) is performed and two separate models are trained. The proxy is used for selecting which examples to label, while the target is only used for evaluating the quality of the selection. By default, the target model (arch) is trained and evaluated after each selection round. To change this behavior set eval_target_at to evaluate at a specific labeling budget(s) or set train_target to False to skip evaluating the target model.

# Perform active learning with ResNet18 for selection and ResNet50 for the final predictions.
python -m svp.imagenet active --datasets-dir '/path/to/data' --arch resnet50 --num-workers 20 \
    --proxy-arch resnet18 --proxy-batch-size 1028 --proxy-scale-learning-rates \
    --eval-target-at 512467

To train the proxy for fewer epochs, use the --proxy-* options as shown below:

# Perform active learning with ResNet18 after only 45 epochs for selection.
python -m svp.imagenet active --datasets-dir '/path/to/data' --arch resnet50 --num-workers 20 \
    --proxy-arch resnet18 --proxy-batch-size 1028 --proxy-scale-learning-rates \
    --eval-target-at 512467 \
    --proxy-learning-rate 0.0167 --proxy-epochs 1 \
    --proxy-learning-rate 0.0333 --proxy-epochs 1 \
    --proxy-learning-rate 0.05 --proxy-epochs 1 \
    --proxy-learning-rate 0.0667 --proxy-epochs 1 \
    --proxy-learning-rate 0.0833 --proxy-epochs 1 \
    --proxy-learning-rate 0.1 --proxy-epochs 25 \
    --proxy-learning-rate 0.01 --proxy-epochs 15

Amazon Review Polarity and Full

Baseline Approach
# Perform active learning with VDCNN29 for both selection and the final predictions.
python -m svp.amazon active --datasets-dir '/path/to/data' --dataset amazon_review_polarity  --num-workers 8 \
    --arch vdcnn29-conv --selection-method least_confidence
Selection via Proxy

If the model architectures (arch vs proxy_arch) or the learning rate schedules don't match, "selection via proxy" (SVP) is performed and two separate models are trained. The proxy is used for selecting which examples to label, while the target is only used for evaluating the quality of the selection. By default, the target model (arch) is trained and evaluated after each selection round. To change this behavior set eval_target_at to evaluate at a specific labeling budget(s) or set train_target to False to skip evaluating the target model. You can evaluate a series of selections later using the precomputed_selection option.

# Perform active learning with VDCNN9 for selection and VDCNN29 for the final predictions.
python -m svp.amazon active --datasets-dir '/path/to/data' --dataset amazon_review_polarity --num-workers 8 \
    --arch vdcnn29-conv --selection-method least_confidence \
    --proxy-arch vdcnn9-maxpool --eval-target-at 1440000

To use fastText as a proxy, Install fastText 0.1.0 and replace /path/to/fastText/fasttext in the python -m svp.amazon fasttext commands below with the path to the fastText binary you created.

# For convenience, save fastText results in a separate directory
mkdir fasttext
# Perform active learning with fastText.
python -m svp.amazon fasttext '/path/to/fastText/fasttext' --run-dir fasttext \
    --datasets-dir '/path/to/data' --dataset amazon_review_polarity --selection-method least_confidence \
    --size 72000 --size 360000 --size 720000 --size 1080000 --size 1440000
# Get the most recent timestamp from the fasttext directory.
fasttext_path="fasttext/$(ls fasttext | sort -nr | head -n 1)"
# Use selected labeled data from fastText to train VDCNN29
python -m svp.amazon active --datasets-dir '/path/to/data' --dataset amazon_review_polarity --num-workers 8 \
    --arch vdcnn29-conv --selection-method least_confidence \
    --precomputed-selection $fasttext_path --eval-target-at 1440000

Core-set Selection

Core-set selection techniques start with a large labeled or unlabeled dataset and aim to find a small subset that accurately approximates the full dataset by selecting representative examples. The commands below demonstrate how to perform core-set selection on CIFAR10, CIFAR100, ImageNet, Amazon Review Polarity and Amazon Review Full with a variety of models and selection methods.

CIFAR10 and CIFAR100

Baseline Approach
# Perform core-set selection with an oracle that uses ResNet164 for both selection and the final predictions.
python -m svp.cifar coreset --dataset cifar10 --arch preact164 --num-workers 4 \
    --subset 25000 --selection-method forgetting_events
Selection via Proxy
# Perform core-set selection with ResNet20 selecting for ResNet164.
python -m svp.cifar coreset --dataset cifar10 --arch preact164 --num-workers 4 \
    --subset 25000 --selection-method forgetting_events \
    --proxy-arch preact20

To train the proxy for fewer epochs, use the --proxy-* options as shown below:

# Perform core-set selection with ResNet20 after only 50 epochs.
python -m svp.cifar coreset --dataset cifar10 --arch preact164 --num-workers 4 \
    --subset 25000 --selection-method forgetting_events \
    --proxy-arch preact20 \
	--proxy-learning-rate 0.01 --proxy-epochs 1 \
	--proxy-learning-rate 0.1 --proxy-epochs 45 \
	--proxy-learning-rate 0.01 --proxy-epochs 4

ImageNet

Baseline Approach
# Perform core-set selection with an oracle that uses ResNet50 for both selection and the final predictions.
python -m svp.imagenet coreset --datasets-dir '/path/to/data' --arch resnet50 --num-workers 20 \
    --subset 768700 --selection-method forgetting_events
Selection via Proxy
# Perform core-set selection with ResNet18 selecting for ResNet50.
python -m svp.imagenet coreset --datasets-dir '/path/to/data' --arch resnet50 --num-workers 20 \
    --subset 768700 --selection-method forgetting_events \
    --proxy-arch resnet18 --proxy-batch-size 1028 --proxy-scale-learning-rates

Amazon Review Polarity and Full

Baseline Approach
# Perform core-set selection with an oracle that uses VDCNN29 for both selection and the final predictions.
python -m svp.amazon coreset --datasets-dir '/path/to/data' --dataset amazon_review_polarity --num-workers 8 \
    --arch vdcnn29-conv --subset 2160000  --selection-method entropy
Selection via Proxy
# Perform core-set selection with VDCNN9 selecting for VDCNN29.
python -m svp.amazon coreset --datasets-dir '/path/to/data' --dataset amazon_review_polarity --num-workers 8 \
    --arch vdcnn29-conv --subset 2160000 --selection-method entropy \
    --proxy-arch vdcnn9-maxpool

To use fastText as a proxy, Install fastText 0.1.0 and replace /path/to/fastText/fasttext in the python -m svp.amazon fasttext commands below with the path to the fastText binary you created.

# For convenience, save fastText results in a separate directory
mkdir fasttext
# Perform core-set selection with fastText.
python -m svp.amazon fasttext '/path/to/fastText/fasttext' --run-dir fasttext \
    --datasets-dir '/path/to/data' --dataset amazon_review_polarity \
    --selection-method entropy --size 3600000 --size 2160000
# Get the most recent timestamp from the fasttext directory.
fasttext_path="fasttext/$(ls fasttext | sort -nr | head -n 1)"
# Use selected labeled data from fastText to train VDCNN29
python -m svp.amazon coreset --datasets-dir '/path/to/data' --dataset amazon_review_polarity --num-workers 8 \
    --arch vdcnn29-conv --precomputed-selection $fasttext_path
Owner
Stanford Future Data Systems
We are a CS research group at Stanford building data-intensive systems
Stanford Future Data Systems
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022