Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

Overview

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert is an accurate, automated deep-learning based chest radiology report labeler that can label for the following 14 medical observations: Fracture, Consolidation, Enlarged Cardiomediastinum, No Finding, Pleural Other, Cardiomegaly, Pneumothorax, Atelectasis, Support Devices, Edema, Pleural Effusion, Lung Lesion, Lung Opacity

Paper (Accepted to EMNLP 2020): https://arxiv.org/abs/2004.09167

License from us (For Commercial Purposes): http://techfinder2.stanford.edu/technology_detail.php?ID=43869

Abstract

The extraction of labels from radiology text reports enables large-scale training of medical imaging models. Existing approaches to report labeling typically rely either on sophisticated feature engineering based on medical domain knowledge or manual annotations by experts. In this work, we introduce a BERT-based approach to medical image report labeling that exploits both the scale of available rule-based systems and the quality of expert annotations. We demonstrate superior performance of a biomedically pretrained BERT model first trained on annotations of a rulebased labeler and then finetuned on a small set of expert annotations augmented with automated backtranslation. We find that our final model, CheXbert, is able to outperform the previous best rules-based labeler with statistical significance, setting a new SOTA for report labeling on one of the largest datasets of chest x-rays.

The CheXbert approach

Prerequisites

(Recommended) Install requirements, with Python 3.7 or higher, using pip.

pip install -r requirements.txt

OR

Create conda environment

conda env create -f environment.yml

Activate environment

conda activate chexbert

By default, all available GPU's will be used for labeling in parallel. If there is no GPU, the CPU is used. You can control which GPU's are used by appropriately setting CUDA_VISIBLE_DEVICES. The batch size by default is 18 but can be changed inside constants.py

Checkpoint download

Download our trained model checkpoint here: https://stanfordmedicine.box.com/s/c3stck6w6dol3h36grdc97xoydzxd7w9.

This model was first trained on ~187,000 MIMIC-CXR radiology reports labeled by the CheXpert labeler and then further trained on a separate set of 1000 radiologist-labeled reports from the MIMIC-CXR dataset, augmented with backtranslation. The MIMIC-CXR reports are deidentified and do not contain PHI. This model differs from the one in our paper, which was instead trained on radiology reports from the CheXpert dataset.

Usage

Label reports with CheXbert

Put all reports in a csv file under the column name "Report Impression". Let the path to this csv be {path to reports}. Download the PyTorch checkpoint and let the path to it be {path to checkpoint}. Let the path to your desired output folder by {path to output dir}.

python label.py -d={path to reports} -o={path to output dir} -c={path to checkpoint} 

The output file with labeled reports is {path to output dir}/labeled_reports.csv

Run the following for descriptions of all command line arguments:

python label.py -h

Ignore any error messages about the size of the report exceeding 512 tokens. All reports are automatically cut off at 512 tokens.

Train a model on labeled reports

Put all train/dev set reports in csv files under the column name "Report Impression". The labels for each of the 14 conditions should be in columns with the corresponding names, and the class labels should follow the convention described in this README.

Training is a two-step process. First, you must tokenize and save all the report impressions in the train and dev sets as lists:

python bert_tokenizer.py -d={path to train/dev reports csv} -o={path to output list}

After having saved the tokenized report impressions lists for the train and dev sets, you can run training as follows. You can modify the batch size or learning rate in constants.py

python run_bert.py --train_csv={path to train reports csv} --dev_csv={path to dev reports csv} --train_imp_list={path to train impressions list} --dev_imp_list={path to dev impressions list} --output_dir={path to checkpoint saving directory}

The above command will initialize BERT-base weights and then train the model. If you want to initialize the model with BlueBERT or BioBERT weights (or potentially any other pretrained weights) then you should download their checkpoints, convert them to pytorch using the HuggingFace transformers command line utility (https://huggingface.co/transformers/converting_tensorflow_models.html), and provide the path to the checkpoint folder in the PRETRAIN_PATH variable in constants.py. Then run the above command.

If you wish to train further from an existing CheXbert checkpoint you can run:

python run_bert.py --train_csv={path to train reports csv} --dev_csv={path to dev reports csv} --train_imp_list={path to train impressions list} --dev_imp_list={path to dev impressions list} --output_dir={path to checkpoint saving directory} --checkpoint={path to existing CheXbert checkpoint}

Label Convention

The labeler outputs the following numbers corresponding to classes. This convention is the same as that of the CheXpert labeler.

  • Blank: NaN
  • Positive: 1
  • Negative: 0
  • Uncertain: -1

Citation

If you use the CheXbert labeler in your work, please cite our paper:

@misc{smit2020chexbert,
	title={CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT},
	author={Akshay Smit and Saahil Jain and Pranav Rajpurkar and Anuj Pareek and Andrew Y. Ng and Matthew P. Lungren},
	year={2020},
	eprint={2004.09167},
	archivePrefix={arXiv},
	primaryClass={cs.CL}
}
Owner
Stanford Machine Learning Group
Our mission is to significantly improve people's lives through our work in AI
Stanford Machine Learning Group
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022