Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

Overview

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert is an accurate, automated deep-learning based chest radiology report labeler that can label for the following 14 medical observations: Fracture, Consolidation, Enlarged Cardiomediastinum, No Finding, Pleural Other, Cardiomegaly, Pneumothorax, Atelectasis, Support Devices, Edema, Pleural Effusion, Lung Lesion, Lung Opacity

Paper (Accepted to EMNLP 2020): https://arxiv.org/abs/2004.09167

License from us (For Commercial Purposes): http://techfinder2.stanford.edu/technology_detail.php?ID=43869

Abstract

The extraction of labels from radiology text reports enables large-scale training of medical imaging models. Existing approaches to report labeling typically rely either on sophisticated feature engineering based on medical domain knowledge or manual annotations by experts. In this work, we introduce a BERT-based approach to medical image report labeling that exploits both the scale of available rule-based systems and the quality of expert annotations. We demonstrate superior performance of a biomedically pretrained BERT model first trained on annotations of a rulebased labeler and then finetuned on a small set of expert annotations augmented with automated backtranslation. We find that our final model, CheXbert, is able to outperform the previous best rules-based labeler with statistical significance, setting a new SOTA for report labeling on one of the largest datasets of chest x-rays.

The CheXbert approach

Prerequisites

(Recommended) Install requirements, with Python 3.7 or higher, using pip.

pip install -r requirements.txt

OR

Create conda environment

conda env create -f environment.yml

Activate environment

conda activate chexbert

By default, all available GPU's will be used for labeling in parallel. If there is no GPU, the CPU is used. You can control which GPU's are used by appropriately setting CUDA_VISIBLE_DEVICES. The batch size by default is 18 but can be changed inside constants.py

Checkpoint download

Download our trained model checkpoint here: https://stanfordmedicine.box.com/s/c3stck6w6dol3h36grdc97xoydzxd7w9.

This model was first trained on ~187,000 MIMIC-CXR radiology reports labeled by the CheXpert labeler and then further trained on a separate set of 1000 radiologist-labeled reports from the MIMIC-CXR dataset, augmented with backtranslation. The MIMIC-CXR reports are deidentified and do not contain PHI. This model differs from the one in our paper, which was instead trained on radiology reports from the CheXpert dataset.

Usage

Label reports with CheXbert

Put all reports in a csv file under the column name "Report Impression". Let the path to this csv be {path to reports}. Download the PyTorch checkpoint and let the path to it be {path to checkpoint}. Let the path to your desired output folder by {path to output dir}.

python label.py -d={path to reports} -o={path to output dir} -c={path to checkpoint} 

The output file with labeled reports is {path to output dir}/labeled_reports.csv

Run the following for descriptions of all command line arguments:

python label.py -h

Ignore any error messages about the size of the report exceeding 512 tokens. All reports are automatically cut off at 512 tokens.

Train a model on labeled reports

Put all train/dev set reports in csv files under the column name "Report Impression". The labels for each of the 14 conditions should be in columns with the corresponding names, and the class labels should follow the convention described in this README.

Training is a two-step process. First, you must tokenize and save all the report impressions in the train and dev sets as lists:

python bert_tokenizer.py -d={path to train/dev reports csv} -o={path to output list}

After having saved the tokenized report impressions lists for the train and dev sets, you can run training as follows. You can modify the batch size or learning rate in constants.py

python run_bert.py --train_csv={path to train reports csv} --dev_csv={path to dev reports csv} --train_imp_list={path to train impressions list} --dev_imp_list={path to dev impressions list} --output_dir={path to checkpoint saving directory}

The above command will initialize BERT-base weights and then train the model. If you want to initialize the model with BlueBERT or BioBERT weights (or potentially any other pretrained weights) then you should download their checkpoints, convert them to pytorch using the HuggingFace transformers command line utility (https://huggingface.co/transformers/converting_tensorflow_models.html), and provide the path to the checkpoint folder in the PRETRAIN_PATH variable in constants.py. Then run the above command.

If you wish to train further from an existing CheXbert checkpoint you can run:

python run_bert.py --train_csv={path to train reports csv} --dev_csv={path to dev reports csv} --train_imp_list={path to train impressions list} --dev_imp_list={path to dev impressions list} --output_dir={path to checkpoint saving directory} --checkpoint={path to existing CheXbert checkpoint}

Label Convention

The labeler outputs the following numbers corresponding to classes. This convention is the same as that of the CheXpert labeler.

  • Blank: NaN
  • Positive: 1
  • Negative: 0
  • Uncertain: -1

Citation

If you use the CheXbert labeler in your work, please cite our paper:

@misc{smit2020chexbert,
	title={CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT},
	author={Akshay Smit and Saahil Jain and Pranav Rajpurkar and Anuj Pareek and Andrew Y. Ng and Matthew P. Lungren},
	year={2020},
	eprint={2004.09167},
	archivePrefix={arXiv},
	primaryClass={cs.CL}
}
Owner
Stanford Machine Learning Group
Our mission is to significantly improve people's lives through our work in AI
Stanford Machine Learning Group
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022