Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Overview

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Heng (* Joint first authors.)

Instance Shadow Detection aims to find shadow instances, object instances and shadow-object associations; this task benefits many vision applications, such as light direction estimation and photo editing.

In this paper, we present a new single-stage fully convolutional network architecture with a bidirectional relation learning module to directly learn the relations of shadow and object instances in an end-to-end manner.

[ 📄 Paper] [👇🏼 Video] Open In Colab

YouTube

Requirement

pip install -r requirement.txt

Note that we tested on CUDA10.2 / PyTorch 1.6.0, CUDA11.1 / PyTorch 1.8.0 and Colab.

Installation

This repo is implemented on AdelaiDet, so first build it with:

$ cd SSIS
$ python setup.py build develop

Dataset and pre-trained model

Method SOAP mask SOAP bbox mask AP box AP
LISA 21.2 21.7 37.0 38.1
Ours 27.4 25.5 40.3 39.6

Download the dataset and model_final.pth from Google drive. Put dataset file in the ../dataset/ and put pretrained model in the tools/output/SSIS_MS_R_101_bifpn_with_offset_class/. Note that we add new annotation file in the SOBA dataset.

Quick Start

Demo

To evaluate the results, try the command example:

$ cd demo
$ python demo.py --input ./samples

Training

$ cd tools
$ python train_net.py \
    --config-file ../configs/SSIS/MS_R_101_BiFPN_with_offset_class.yaml \
    --num-gpus 2 

Evaluation

$ python train_net.py \
    --config-file ../configs/SSIS/MS_R_101_BiFPN_with_offset_class.yaml \
    --num-gpus 2 --resume --eval-only
$ python SOAP.py --path PATH_TO_YOUR_DATASET/SOBA \ 
    --input-name ./output/SSIS_MS_R_101_bifpn_with_offset_class

Citation

If you use LISA, SSIS, SOBA, or SOAP, please use the following BibTeX entry.

@InProceedings{Wang_2020_CVPR,
author    = {Wang, Tianyu and Hu, Xiaowei and Wang, Qiong and Heng, Pheng-Ann and Fu, Chi-Wing},
title     = {Instance Shadow Detection},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month     = {June},
year      = {2020}
}

@InProceedings{Wang_2021_CVPR,
author    = {Wang, Tianyu and Hu, Xiaowei and Fu, Chi-Wing and Heng, Pheng-Ann},
title     = {Single-Stage Instance Shadow Detection With Bidirectional Relation Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month     = {June},
Year      = {2021},
pages     = {1-11}
}
Owner
Steve Wong
Discovering the world. CS Ph.D @ CUHK
Steve Wong
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022