DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

Overview

DirectVoxGO

DirectVoxGO (Direct Voxel Grid Optimization, see our paper) reconstructs a scene representation from a set of calibrated images capturing the scene.

  • NeRF-comparable quality for synthesizing novel views from our scene representation.
  • Super-fast convergence: Our 15 mins/scene vs. NeRF's 10~20+ hrs/scene.
  • No cross-scene pre-training required: We optimize each scene from scratch.
  • Better rendering speed: Our <1 secs vs. NeRF's 29 secs to synthesize a 800x800 images.

Below run-times (mm:ss) of our optimization progress are measured on a machine with a single RTX 2080 Ti GPU.

github_teaser.mp4

Update

  • 2021.11.23: Support CO3D dataset.
  • 2021.11.23: Initial release. Issue page is disabled for now. Feel free to contact [email protected] if you have any questions.

Installation

git clone [email protected]:sunset1995/DirectVoxGO.git
cd DirectVoxGO
pip install -r requirements.txt

Pytorch installation is machine dependent, please install the correct version for your machine. The tested version is pytorch 1.8.1 with python 3.7.4.

Dependencies (click to expand)
  • PyTorch, numpy: main computation.
  • scipy, lpips: SSIM and LPIPS evaluation.
  • tqdm: progress bar.
  • mmcv: config system.
  • opencv-python: image processing.
  • imageio, imageio-ffmpeg: images and videos I/O.

Download: datasets, trained models, and rendered test views

Directory structure for the datasets (click to expand; only list used files)
data
├── nerf_synthetic     # Link: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
│   └── [chair|drums|ficus|hotdog|lego|materials|mic|ship]
│       ├── [train|val|test]
│       │   └── r_*.png
│       └── transforms_[train|val|test].json
│
├── Synthetic_NSVF     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip
│   └── [Bike|Lifestyle|Palace|Robot|Spaceship|Steamtrain|Toad|Wineholder]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0_train|1_val|2_test]_*.png
│       └── pose
│           └── [0_train|1_val|2_test]_*.txt
│
├── BlendedMVS         # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip
│   └── [Character|Fountain|Jade|Statues]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── TanksAndTemple     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip
│   └── [Barn|Caterpillar|Family|Ignatius|Truck]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── deepvoxels     # Link: https://drive.google.com/drive/folders/1ScsRlnzy9Bd_n-xw83SP-0t548v63mPH
│   └── [train|validation|test]
│       └── [armchair|cube|greek|vase]
│           ├── intrinsics.txt
│           ├── rgb/*.png
│           └── pose/*.txt
│
└── co3d               # Link: https://github.com/facebookresearch/co3d
    └── [donut|teddybear|umbrella|...]
        ├── frame_annotations.jgz
        ├── set_lists.json
        └── [129_14950_29917|189_20376_35616|...]
            ├── images
            │   └── frame*.jpg
            └── masks
                └── frame*.png

Synthetic-NeRF, Synthetic-NSVF, BlendedMVS, Tanks&Temples, DeepVoxels datasets

We use the datasets organized by NeRF, NSVF, and DeepVoxels. Download links:

Download all our trained models and rendered test views at this link to our logs.

CO3D dataset

We also support the recent Common Objects In 3D dataset. Our method only performs per-scene reconstruction and no cross-scene generalization.

GO

Train

To train lego scene and evaluate testset PSNR at the end of training, run:

$ python run.py --config configs/nerf/lego.py --render_test

Use --i_print and --i_weights to change the log interval.

Evaluation

To only evaluate the testset PSNR, SSIM, and LPIPS of the trained lego without re-training, run:

$ python run.py --config configs/nerf/lego.py --render_only --render_test \
                                              --eval_ssim --eval_lpips_vgg

Use --eval_lpips_alex to evaluate LPIPS with pre-trained Alex net instead of VGG net.

Reproduction

All config files to reproduce our results:

$ ls configs/*
configs/blendedmvs:
Character.py  Fountain.py  Jade.py  Statues.py

configs/nerf:
chair.py  drums.py  ficus.py  hotdog.py  lego.py  materials.py  mic.py  ship.py

configs/nsvf:
Bike.py  Lifestyle.py  Palace.py  Robot.py  Spaceship.py  Steamtrain.py  Toad.py  Wineholder.py

configs/tankstemple:
Barn.py  Caterpillar.py  Family.py  Ignatius.py  Truck.py

configs/deepvoxels:
armchair.py  cube.py  greek.py  vase.py

Your own config files

Check the comments in configs/default.py for the configuable settings. The default values reproduce our main setup reported in our paper. We use mmcv's config system. To create a new config, please inherit configs/default.py first and then update the fields you want. Below is an example from configs/blendedmvs/Character.py:

_base_ = '../default.py'

expname = 'dvgo_Character'
basedir = './logs/blended_mvs'

data = dict(
    datadir='./data/BlendedMVS/Character/',
    dataset_type='blendedmvs',
    inverse_y=True,
    white_bkgd=True,
)

Development and tuning guide

Extention to new dataset

Adjusting the data related config fields to fit your camera coordinate system is recommend before implementing a new one. We provide two visualization tools for debugging.

  1. Inspect the camera and the allocated BBox.
    • Export via --export_bbox_and_cams_only {filename}.npz:
      python run.py --config configs/nerf/mic.py --export_bbox_and_cams_only cam_mic.npz
    • Visualize the result:
      python tools/vis_train.py cam_mic.npz
  2. Inspect the learned geometry after coarse optimization.
    • Export via --export_coarse_only {filename}.npz (assumed coarse_last.tar available in the train log):
      python run.py --config configs/nerf/mic.py --export_coarse_only coarse_mic.npz
    • Visualize the result:
      python tools/vis_volume.py coarse_mic.npz 0.001 --cam cam_mic.npz
Inspecting the cameras & BBox Inspecting the learned coarse volume

Speed and quality tradeoff

We have reported some ablation experiments in our paper supplementary material. Setting N_iters, N_rand, num_voxels, rgbnet_depth, rgbnet_width to larger values or setting stepsize to smaller values typically leads to better quality but need more computation. Only stepsize is tunable in testing phase, while all the other fields should remain the same as training.

Acknowledgement

The code base is origined from an awesome nerf-pytorch implementation, but it becomes very different from the code base now.

Owner
sunset
A Ph.D. candidate working on computer vision tasks. Recently focusing on 3D modeling.
sunset
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022