FairMOT for Multi-Class MOT using YOLOX as Detector

Overview

FairMOT-X

Project Overview

FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes use of YOLOX as the detector from end-to-end, and uses DCN to perform feature fusion of PAFPN outputs to learn the ReID branch. This repo is a work in progress.

Acknowledgement

This project heavily uses code from the the original FairMOT, as well as MCMOT and YOLOv4 MCMOT.

Comments
  • Detailed readme

    Detailed readme

    Thanks for your excellent work!And i have the same idea with you but i can't implement it,Can you provide detailed insatallation in reame file or your contact information,that's a milestone in my research. Thank you in advance!

    opened by Soyad-yao 10
  • how to train on other datasets

    how to train on other datasets

    Hello ! First,thank you for your work! But I have a question. I want to train on other datasets not bdd100k , such as detrac, how to use? Thank you very much!

    opened by fafa114 2
  • Conda environment

    Conda environment

    Could you please share a working environment requirements list for this repo? I followed FairMOT installation procedure but I am unable to start a sample training. I got the following error:

    python3 ./src/train.py mot \

    --exp_id yolo-m --yolo_depth 0.67 --yolo_width 0.75 \
    --lr 7e-4 --lr_step 2 \
    --reid_dim 128 --augment --mosaic \
    --batch_size 16 --gpus 0 
    

    /home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: /home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/image.so: undefined symbol: _ZNK3c106IValue23reportToTensorTypeErrorEv warn(f"Failed to load image Python extension: {e}") Traceback (most recent call last): File "./src/train.py", line 16, in from torchvision.transforms import transforms as T File "/home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/init.py", line 7, in from torchvision import models File "/home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/models/init.py", line 18, in from . import quantization File "/home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/models/quantization/init.py", line 3, in from .mobilenet import * File "/home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/models/quantization/mobilenet.py", line 1, in from .mobilenetv2 import * # noqa: F401, F403 File "/home/fatih/miniconda3/envs/fairmot-x/lib/python3.8/site-packages/torchvision/models/quantization/mobilenetv2.py", line 6, in from torch.ao.quantization import QuantStub, DeQuantStub ModuleNotFoundError: No module named 'torch.ao'

    opened by youonlytrackonce 0
  • How to get the tracking indicators, such as Mota

    How to get the tracking indicators, such as Mota

    I want to know how to get the tracking indicators, such as MOTA, only "python3 track.py"? But when I run track.py ,always show "[Warning]: No objects detected." I don't know why. And I can't get indicators . But I can get images after tracking on BDD100k MOT dataset.

    opened by fafa114 0
  • train log

    train log

    Thanks for your work! I follow your code and then implement yolox+fairmot in mmdetection. But the ReID loss does not descend. Would you mind uploading your train log as a reference ?

    opened by taofuyu 3
Releases(Weights)
Owner
Jonathan Tan
Mech. Engineering Undergraduate at NUS with deep interest in machine learning and robotics.
Jonathan Tan
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022