S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

Overview

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss)

This is the official pytorch implementation of our paper:

"S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration" (CVPR 2021)

by Zhiqiang Shen, Zechun Liu, Jie Qin, Lei Huang, Kwang-Ting Cheng and Marios Savvides.

In this paper, we introduce a simple yet effective self-supervised approach using distillation loss for learning efficient binary neural networks. Our proposed method can outperform the simple contrastive learning baseline (MoCo V2) by an absolute gain of 5.5∼15% on ImageNet.

The student models are not restricted to the binary neural networks, you can replace with any efficient/compact models.

Citation

If you find our code is helpful for your research, please cite:

@InProceedings{Shen_2021_CVPR,
	author    = {Shen, Zhiqiang and Liu, Zechun and Qin, Jie and Huang, Lei and Cheng, Kwang-Ting and Savvides, Marios},
	title     = {S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-Bit Neural Networks via Guided Distribution Calibration},
	booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
	year      = {2021}

}

Preparation

1. Requirements:

  • Python
  • PyTorch
  • Torchvision

2. Data:

Training & Testing

To train a model, run the following scripts. All our models are trained with 8 GPUs.

1. Standard Two-Step Training:

Our enhanced MoCo V2:

Step 1:

cd Contrastive_only/step1
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders]  --mlp --moco-t 0.2 --aug-plus --cos -j 48  

Step 2:

cd Contrastive_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders]  --mlp --moco-t 0.2 --aug-plus --cos -j 48  --model-path ../step1/checkpoint_0199.pth.tar

Our MoCo V2 + Distillation Loss:

Download real-valued teacher network here. We use MoCo V2 800-epoch pretrained model, while you can choose other stronger self-supervised models as the teachers.

Step 1:

cd Contrastive+Distillation/step1
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0  --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

Step 2:

cd Contrastive+Distillation/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0  --teacher-path ../../moco_v2_800ep_pretrain.pth.tar --model-path ../step1/checkpoint_0199.pth.tar

Our Distillation Loss Only:

Step 1:

cd Distillation_only/step1
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

Step 2:

cd Distillation_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar --model-path ../step1/checkpoint_0199.pth.tar

2. Simple One-Step Training (Conventional):

Our enhanced MoCo V2:

cd Contrastive_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 

Our MoCo V2 + Distillation Loss:

cd Contrastive+Distillation/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

Our Distillation Loss Only:

cd Distillation_only/step2
python main_moco.py --lr 0.0003 --batch-size 256 --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] --mlp --moco-t 0.2 --aug-plus --cos -j 48 --wd 0 --teacher-path ../../moco_v2_800ep_pretrain.pth.tar 

You can replace binary neural networks with any kinds of efficient/compact models on one-step training.

3. Testing:

  • To linearly evaluate a model, run the following script:

    python main_lincls.py  --lr 0.1  -j 24  --batch-size 256  --pretrained  /home/szq/projects/s2bnn/checkpoint_0199.pth.tar --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders] 
    

Results & Models

We provide pre-trained models with different training strategies, we report in the table #epochs, OPs, Top-1 accuracy on ImageNet validation set:

Models #Epoch FLOPs (x108) OPs (x108) Top-1 (%) Trained models
MoCo V2 baseline 200 0.12 0.87 46.9 Download
Our enhanced MoCo V2 200 0.12 0.87 52.5 Download
Our MoCo V2 + Distillation Loss 200 0.12 0.87 56.0 Download
Our Distillation Loss Only 200 0.12 0.87 61.5 Download

Training Logs

Our linear evaluation logs are availabe at here.

Acknowledgement

MoCo V2 (Improved Baselines with Momentum Contrastive Learning)

ReActNet (ReActNet: Towards Precise Binary NeuralNetwork with Generalized Activation Functions)

MEAL V2 (MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks)

Contact

Zhiqiang Shen, CMU (zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022