Totally Versatile Miscellanea for Pytorch

Overview

Totally Versatile Miscellania for PyTorch

Thomas Viehmann [email protected]

This repository collects various things I have implmented for PyTorch

Layers, autogra functions and calculations

Learning approaches

Generative Adversarial Networks

Wasserstein GAN - See also my two blog posts on the subject

Comments
  • Need pytorch nightly?

    Need pytorch nightly?

    Hi! Thank you for making the Wasserstein loss extension available. Forgive me if this isn't an issue, I am not an expert user. I just wanted to comment that when I tried to run the extension in my computer (torch 1.1.0) I was getting this error in compilation time:

    error: identifier "TORCH_CHECK" is undefined
    

    After installing the latest pytorch-nightly everything seems to run smoothly, so I guess this may be a requirement?

    opened by agaldran 4
  • Problem with scripting the model

    Problem with scripting the model

    Hi Sir,

    I have started learning torchscript and your blog was a great source to understand JIT. I tried to run the notebook pytorch_automatic_optimization_jit.ipynb but I am unable to run the c++, CUDA, CPU kernels also I am unable to get the similar graph present in the notebook. I have attached the link of the colab, I am working with.

    I request you to help me with this problem

    Colan Notebook

    opened by Midhilesh29 1
  • Error building extension 'wasserstein'

    Error building extension 'wasserstein'

    Hi @t-vi

    First of all, thank you for sharing your impressive work. Right now I'm using the code you used for comparison to calculate Wasserstein loss. However, that take around 4 minutes for one batch in my case. That takes too long. And your work seems much faster.

    However, when I trying to run your code on my server, I got error like below: Do you know what this means. The server I used is a team server, I don't want to change gcc without know if they will massup the current environment.

    Appreciate any help you can provide!

    /home/anyu/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py:118: UserWarning:

                               !! WARNING !!
    

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Your compiler (c++) may be ABI-incompatible with PyTorch! Please use a compiler that is ABI-compatible with GCC 4.9 and above. See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.

    See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6 for instructions on how to install GCC 4.9 or higher. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!
    

    warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))

    CalledProcessError Traceback (most recent call last) ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in _build_extension_module(name, build_directory) 758 subprocess.check_output( --> 759 ['ninja', '-v'], stderr=subprocess.STDOUT, cwd=build_directory) 760 except subprocess.CalledProcessError:

    ~/anaconda3/lib/python3.6/subprocess.py in check_output(timeout, *popenargs, **kwargs) 335 return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, --> 336 **kwargs).stdout 337

    ~/anaconda3/lib/python3.6/subprocess.py in run(input, timeout, check, *popenargs, **kwargs) 417 raise CalledProcessError(retcode, process.args, --> 418 output=stdout, stderr=stderr) 419 return CompletedProcess(process.args, retcode, stdout, stderr)

    CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.

    During handling of the above exception, another exception occurred:

    RuntimeError Traceback (most recent call last) in () 1 import torch 2 wasserstein_ext = torch.utils.cpp_extension.load_inline("wasserstein", cpp_sources="", cuda_sources=cuda_source, ----> 3 extra_cuda_cflags=["--expt-relaxed-constexpr"] ) 4 5 def sinkstep(dist, log_nu, log_u, lam: float):

    ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in load_inline(name, cpp_sources, cuda_sources, functions, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda) 639 build_directory, 640 verbose, --> 641 with_cuda=with_cuda) 642 643

    ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in _jit_compile(name, sources, extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths, build_directory, verbose, with_cuda) 680 if verbose: 681 print('Building extension module {}...'.format(name)) --> 682 _build_extension_module(name, build_directory) 683 finally: 684 baton.release()

    ~/anaconda3/lib/python3.6/site-packages/torch/utils/cpp_extension.py in _build_extension_module(name, build_directory) 763 # error.output contains the stdout and stderr of the build attempt. 764 raise RuntimeError("Error building extension '{}': {}".format( --> 765 name, error.output.decode())) 766 767

    RuntimeError: Error building extension 'wasserstein': [1/3] /usr/local/cuda/bin/nvcc -DTORCH_EXTENSION_NAME=wasserstein -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/TH -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/THC -I/usr/local/cuda/include -I/home/anyu/anaconda3/include/python3.6m -D_GLIBCXX_USE_CXX11_ABI=0 --compiler-options '-fPIC' --expt-relaxed-constexpr -std=c++11 -c /tmp/torch_extensions/wasserstein/cuda.cu -o cuda.cuda.o FAILED: cuda.cuda.o /usr/local/cuda/bin/nvcc -DTORCH_EXTENSION_NAME=wasserstein -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/TH -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/THC -I/usr/local/cuda/include -I/home/anyu/anaconda3/include/python3.6m -D_GLIBCXX_USE_CXX11_ABI=0 --compiler-options '-fPIC' --expt-relaxed-constexpr -std=c++11 -c /tmp/torch_extensions/wasserstein/cuda.cu -o cuda.cuda.o /tmp/torch_extensions/wasserstein/cuda.cu:6:29: fatal error: torch/extension.h: No such file or directory compilation terminated. [2/3] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=wasserstein -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/TH -I/home/anyu/anaconda3/lib/python3.6/site-packages/torch/lib/include/THC -I/usr/local/cuda/include -I/home/anyu/anaconda3/include/python3.6m -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++11 -c /tmp/torch_extensions/wasserstein/main.cpp -o main.o ninja: build stopped: subcommand failed.

    opened by anyuzoey 1
  • FileNotFoundError: [Errno 2] No such file or directory: 'ninja': 'ninja'

    FileNotFoundError: [Errno 2] No such file or directory: 'ninja': 'ninja'

    Why I had install ninja with conda but still met this bug?? Please help me! T_T

    ninja --version

    1.7.2

    $ nvcc --version

    nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Sun_Jul_28_19:07:16_PDT_2019 Cuda compilation tools, release 10.1, V10.1.243

    pytorch 1.2.0

    py3.7_cuda10.0.130_cudnn7.6.2_0

    output

    Traceback (most recent call last):
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 890, in verify_ninja_availability
        subprocess.check_call('ninja --version'.split(), stdout=devnull)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 342, in check_call
        retcode = call(*popenargs, **kwargs)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 323, in call
        with Popen(*popenargs, **kwargs) as p:
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 775, in __init__
        restore_signals, start_new_session)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/subprocess.py", line 1522, in _execute_child
        raise child_exception_type(errno_num, err_msg, err_filename)
    FileNotFoundError: [Errno 2] No such file or directory: 'ninja': 'ninja'
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/devdata/new_Relation_Extraction/test_wasserstein.py", line 208, in <module>
        extra_cuda_cflags=["--expt-relaxed-constexpr"])
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 787, in load_inline
        is_python_module)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 827, in _jit_compile
        with_cuda=with_cuda)
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 850, in _write_ninja_file_and_build
        verify_ninja_availability()
      File "/home/lowen/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 892, in verify_ninja_availability
        raise RuntimeError("Ninja is required to load C++ extensions")
    RuntimeError: Ninja is required to load C++ extensions
    

    code

    import math
    import torch
    import torch.utils
    import torch.utils.cpp_extension
    # % matplotlib inline
    #
    
    # from matplotlib import pyplot
    # import matplotlib.transforms
    #
    # import ot  # for comparison
    
    cuda_source = """
    
    #include <torch/extension.h>
    #include <ATen/core/TensorAccessor.h>
    #include <ATen/cuda/CUDAContext.h>
    
    using at::RestrictPtrTraits;
    using at::PackedTensorAccessor;
    
    #if defined(__HIP_PLATFORM_HCC__)
    constexpr int WARP_SIZE = 64;
    #else
    constexpr int WARP_SIZE = 32;
    #endif
    
    // The maximum number of threads in a block
    #if defined(__HIP_PLATFORM_HCC__)
    constexpr int MAX_BLOCK_SIZE = 256;
    #else
    constexpr int MAX_BLOCK_SIZE = 512;
    #endif
    
    // Returns the index of the most significant 1 bit in `val`.
    __device__ __forceinline__ int getMSB(int val) {
      return 31 - __clz(val);
    }
    
    // Number of threads in a block given an input size up to MAX_BLOCK_SIZE
    static int getNumThreads(int nElem) {
    #if defined(__HIP_PLATFORM_HCC__)
      int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
    #else
      int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
    #endif
      for (int i = 0; i != 5; ++i) {
        if (nElem <= threadSizes[i]) {
          return threadSizes[i];
        }
      }
      return MAX_BLOCK_SIZE;
    }
    
    
    template <typename T>
    __device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
    {
    #if CUDA_VERSION >= 9000
        return __shfl_xor_sync(mask, value, laneMask, width);
    #else
        return __shfl_xor(value, laneMask, width);
    #endif
    }
    
    // While this might be the most efficient sinkhorn step / logsumexp-matmul implementation I have seen,
    // this is awfully inefficient compared to matrix multiplication and e.g. NVidia cutlass may provide
    // many great ideas for improvement
    template <typename scalar_t, typename index_t>
    __global__ void sinkstep_kernel(
      // compute log v_bj = log nu_bj - logsumexp_i 1/lambda dist_ij - log u_bi
      // for this compute maxdiff_bj = max_i(1/lambda dist_ij - log u_bi)
      // i = reduction dim, using threadIdx.x
      PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> log_v,
      const PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> dist,
      const PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> log_nu,
      const PackedTensorAccessor<scalar_t, 2, RestrictPtrTraits, index_t> log_u,
      const scalar_t lambda) {
    
      using accscalar_t = scalar_t;
    
      __shared__ accscalar_t shared_mem[2 * WARP_SIZE];
    
      index_t b = blockIdx.y;
      index_t j = blockIdx.x;
      int tid = threadIdx.x;
    
      if (b >= log_u.size(0) || j >= log_v.size(1)) {
        return;
      }
      // reduce within thread
      accscalar_t max = -std::numeric_limits<accscalar_t>::infinity();
      accscalar_t sumexp = 0;
    
      if (log_nu[b][j] == -std::numeric_limits<accscalar_t>::infinity()) {
        if (tid == 0) {
          log_v[b][j] = -std::numeric_limits<accscalar_t>::infinity();
        }
        return;
      }
    
      for (index_t i = threadIdx.x; i < log_u.size(1); i += blockDim.x) {
        accscalar_t oldmax = max;
        accscalar_t value = -dist[i][j]/lambda + log_u[b][i];
        max = max > value ? max : value;
        if (oldmax == -std::numeric_limits<accscalar_t>::infinity()) {
          // sumexp used to be 0, so the new max is value and we can set 1 here,
          // because we will come back here again
          sumexp = 1;
        } else {
          sumexp *= exp(oldmax - max);
          sumexp += exp(value - max); // if oldmax was not -infinity, max is not either...
        }
      }
    
      // now we have one value per thread. we'll make it into one value per warp
      // first warpSum to get one value per thread to
      // one value per warp
      for (int i = 0; i < getMSB(WARP_SIZE); ++i) {
        accscalar_t o_max    = WARP_SHFL_XOR(max, 1 << i, WARP_SIZE);
        accscalar_t o_sumexp = WARP_SHFL_XOR(sumexp, 1 << i, WARP_SIZE);
        if (o_max > max) { // we're less concerned about divergence here
          sumexp *= exp(max - o_max);
          sumexp += o_sumexp;
          max = o_max;
        } else if (max != -std::numeric_limits<accscalar_t>::infinity()) {
          sumexp += o_sumexp * exp(o_max - max);
        }
      }
    
      __syncthreads();
      // this writes each warps accumulation into shared memory
      // there are at most WARP_SIZE items left because
      // there are at most WARP_SIZE**2 threads at the beginning
      if (tid % WARP_SIZE == 0) {
        shared_mem[tid / WARP_SIZE * 2] = max;
        shared_mem[tid / WARP_SIZE * 2 + 1] = sumexp;
      }
      __syncthreads();
      if (tid < WARP_SIZE) {
        max = (tid < blockDim.x / WARP_SIZE ? shared_mem[2 * tid] : -std::numeric_limits<accscalar_t>::infinity());
        sumexp = (tid < blockDim.x / WARP_SIZE ? shared_mem[2 * tid + 1] : 0);
      }
      for (int i = 0; i < getMSB(WARP_SIZE); ++i) {
        accscalar_t o_max    = WARP_SHFL_XOR(max, 1 << i, WARP_SIZE);
        accscalar_t o_sumexp = WARP_SHFL_XOR(sumexp, 1 << i, WARP_SIZE);
        if (o_max > max) { // we're less concerned about divergence here
          sumexp *= exp(max - o_max);
          sumexp += o_sumexp;
          max = o_max;
        } else if (max != -std::numeric_limits<accscalar_t>::infinity()) {
          sumexp += o_sumexp * exp(o_max - max);
        }
      }
    
      if (tid == 0) {
        log_v[b][j] = (max > -std::numeric_limits<accscalar_t>::infinity() ?
                       log_nu[b][j] - log(sumexp) - max :
                       -std::numeric_limits<accscalar_t>::infinity());
      }
    }
    
    template <typename scalar_t>
    torch::Tensor sinkstep_cuda_template(const torch::Tensor& dist, const torch::Tensor& log_nu, const torch::Tensor& log_u,
                                         const double lambda) {
      TORCH_CHECK(dist.is_cuda(), "need cuda tensors");
      TORCH_CHECK(dist.device() == log_nu.device() && dist.device() == log_u.device(), "need tensors on same GPU");
      TORCH_CHECK(dist.dim()==2 && log_nu.dim()==2 && log_u.dim()==2, "invalid sizes");
      TORCH_CHECK(dist.size(0) == log_u.size(1) &&
               dist.size(1) == log_nu.size(1) &&
               log_u.size(0) == log_nu.size(0), "invalid sizes");
      auto log_v = torch::empty_like(log_nu);
      using index_t = int32_t;
    
      auto log_v_a = log_v.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
      auto dist_a = dist.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
      auto log_nu_a = log_nu.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
      auto log_u_a = log_u.packed_accessor<scalar_t, 2, RestrictPtrTraits, index_t>();
    
      auto stream = at::cuda::getCurrentCUDAStream();
    
      int tf = getNumThreads(log_u.size(1));
      dim3 blocks(log_v.size(1), log_u.size(0));
      dim3 threads(tf);
    
      sinkstep_kernel<<<blocks, threads, 2*WARP_SIZE*sizeof(scalar_t), stream>>>(
        log_v_a, dist_a, log_nu_a, log_u_a, static_cast<scalar_t>(lambda)
        );
    
      return log_v;
    }
    
    torch::Tensor sinkstep_cuda(const torch::Tensor& dist, const torch::Tensor& log_nu, const torch::Tensor& log_u,
                                const double lambda) {
        return AT_DISPATCH_FLOATING_TYPES(log_u.scalar_type(), "sinkstep", [&] {
           return sinkstep_cuda_template<scalar_t>(dist, log_nu, log_u, lambda);
        });
    }
    
    PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
      m.def("sinkstep", &sinkstep_cuda, "sinkhorn step");
    }
    
    """
    
    wasserstein_ext = torch.utils.cpp_extension.load_inline("wasserstein", cpp_sources="", cuda_sources=cuda_source,
                                                            extra_cuda_cflags=["--expt-relaxed-constexpr"])
    
    opened by heslowen 1
  • Confusion about Lambda

    Confusion about Lambda

    Hello, Firstly thank you for the awesome work! I had a question in the Pytorch_Wasserstein.ipynb:

    In the WassersteinLossVanilla, why is it self.K = torch.exp(-self.cost/self.lam)? Shouldn't it be
    self.K = torch.exp(-self.cost*self.lam)?

    In mocha also it is the above https://github.com/pluskid/Mocha.jl/blob/5e15b882d7dd615b0c5159bb6fde2cc040b2d8ee/src/layers/wasserstein-loss.jl#L33

    Have you changed it because "Note that we use a different convention for $\lambda$ (i.e. we use $\lambda$ as the weight for the regularisation, later versions of the above use $\lambda^-1$ as the weight)." ?

    Also what is the reason for the above?

    opened by ForgottenOneNyx 1
  • issue about pytorch wassdistance

    issue about pytorch wassdistance

    I tried to reproduce the pytorch wassdistance under windows system,but it show some problems bellow Traceback (most recent call last): File "", line 1, in File "C:\Users\Alienware.conda\envs\pytorch\lib\site-packages\torch\utils\cpp_extension.py", line 1293, in load_inline return _jit_compile( File "C:\Users\Alienware.conda\envs\pytorch\lib\site-packages\torch\utils\cpp_extension.py", line 1382, in _jit_compile return _import_module_from_library(name, build_directory, is_python_module) File "C:\Users\Alienware.conda\envs\pytorch\lib\site-packages\torch\utils\cpp_extension.py", line 1775, in _import_module_from_library module = importlib.util.module_from_spec(spec) File "", line 556, in module_from_spec File "", line 1166, in create_module File "", line 219, in _call_with_frames_removed ImportError: DLL load failed while importing wasserstein: The specified module could not be found

    opened by MinttHu 0
  • Consider transfering `load_inline` to `setuptools`?

    Consider transfering `load_inline` to `setuptools`?

    Hi! Thanks a lot for your great work about the wasserstein distance <Pytorch_Wasserstein.ipynb>!

    Since torch.utils.cpp_extension.load_inline will compile the cuda code every run, would you consider making it to setuptools, i.e., python setup.py install, so that one could load pre-build libraries?

    Sorry but I'm not familiar with this. Is there any barrier?

    Thanks!

    opened by yd-yin 0
  • Wasserstein implementation does not seem to be fully

    Wasserstein implementation does not seem to be fully "batched"

    Hi @t-vi,

    Thanks for sharing your code!

    I would like to ask a question regarding your implementation of the Sinkhorn algorithm. You stated that one of the main motivations was to obtain efficient batched computation. However, looking at the code I observe that it only supports the case where the cost matrix is the same across the batch:

    def forward(ctx, mu, nu, dist, lam=1e-3, N=100):
            assert mu.dim() == 2 and nu.dim() == 2 and dist.dim() == 2
            bs = mu.size(0)
            d1, d2 = dist.size()
            assert nu.size(0) == bs and mu.size(1) == d1 and nu.size(1) == d2
    

    That is, the shape dist is d1 x d2 instead of bs x d1 x d2. Is this expected?

    Thank you in advance for your reply.

    opened by netw0rkf10w 1
Releases(2018-03-13)
Owner
Thomas Viehmann
Mathematics and Inference at @MathInf I do a lot of @PyTorch work
Thomas Viehmann
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022