pytorch bert intent classification and slot filling

Overview

pytorch_bert_intent_classification_and_slot_filling

基于pytorch的中文意图识别和槽位填充

说明

基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依赖:

pytorch==1.6+
transformers==4.x+

运行指令:

python main.py

可在config.py里面修改相关的参数,训练、验证、测试、还有预测。

结果

意图识别:
accuracy:0.9767441860465116
precision:0.9767441860465116
recall:0.9767441860465116
f1:0.9767441860465116
              precision    recall  f1-score   support

           0       1.00      0.94      0.97        16
           2       1.00      1.00      1.00         1
           3       1.00      1.00      1.00         4
           4       1.00      1.00      1.00        16
           5       0.00      0.00      0.00         1
           6       1.00      1.00      1.00        22
           7       0.84      0.89      0.86        18
           8       0.98      0.95      0.96        57
           9       1.00      1.00      1.00         2
          10       0.00      0.00      0.00         0
          11       0.00      0.00      0.00         1
          12       0.98      0.99      0.99       327
          13       1.00      1.00      1.00         1
          14       1.00      1.00      1.00         3
          15       1.00      1.00      1.00         1
          17       1.00      1.00      1.00         4
          18       1.00      0.80      0.89         5
          19       1.00      1.00      1.00        14
          21       0.00      0.00      0.00         1
          22       1.00      1.00      1.00        13
          23       1.00      1.00      1.00         9

    accuracy                           0.98       516
   macro avg       0.80      0.79      0.79       516
weighted avg       0.97      0.98      0.97       516

槽位填充:
accuracy:0.9366942909760589
precision:0.8052708638360175
recall:0.8461538461538461
f1:0.8252063015753938
                   precision    recall  f1-score   support

             Dest       1.00      1.00      1.00         7
              Src       1.00      0.86      0.92         7
             area       1.00      0.25      0.40         4
           artist       0.89      1.00      0.94         8
       artistRole       1.00      1.00      1.00         2
           author       1.00      1.00      1.00        13
         category       0.73      0.90      0.81        42
             code       0.71      0.83      0.77         6
          content       0.89      0.94      0.91        17
    datetime_date       0.72      0.95      0.82        19
    datetime_time       0.58      0.64      0.61        11
         dishName       0.84      0.88      0.86        74
        dishNamet       0.00      0.00      0.00         1
          dynasty       1.00      1.00      1.00        11
      endLoc_area       0.00      0.00      0.00         2
      endLoc_city       0.96      1.00      0.98        43
       endLoc_poi       0.62      0.73      0.67        11
  endLoc_province       0.00      0.00      0.00         1
          episode       1.00      1.00      1.00         1
             film       0.00      0.00      0.00         1
       ingredient       0.53      0.62      0.57        16
          keyword       0.88      0.88      0.88        25
    location_area       0.00      0.00      0.00         2
    location_city       0.40      1.00      0.57         4
     location_poi       0.36      0.57      0.44         7
location_province       0.00      0.00      0.00         3
             name       0.80      0.88      0.84       182
       popularity       0.00      0.00      0.00         5
       queryField       1.00      1.00      1.00         2
     questionWord       0.00      0.00      0.00         1
         receiver       1.00      1.00      1.00         4
         relIssue       0.00      0.00      0.00         1
       scoreDescr       0.00      0.00      0.00         1
             song       0.86      0.80      0.83        15
   startDate_date       0.93      0.93      0.93        15
   startDate_time       0.00      0.00      0.00         1
    startLoc_area       0.00      0.00      0.00         1
    startLoc_city       0.95      0.97      0.96        38
     startLoc_poi       0.00      0.00      0.00         1
         subfocus       0.00      0.00      0.00         1
              tag       0.40      0.40      0.40         5
           target       1.00      1.00      1.00        12
     teleOperator       0.00      0.00      0.00         1
          theatre       0.50      0.50      0.50         2
        timeDescr       0.00      0.00      0.00         2
        tvchannel       0.74      0.81      0.77        21
        yesterday       0.00      0.00      0.00         1

        micro avg       0.81      0.85      0.83       650
        macro avg       0.52      0.54      0.52       650
     weighted avg       0.79      0.85      0.81       650

=================================
打开相机这
意图: LAUNCH
槽位: [('name', '相', 2, 2)]
=================================
=================================
国际象棋开局
意图: QUERY
槽位: [('name', '国际象棋', 0, 3)]
=================================
=================================
打开淘宝购物
意图: LAUNCH
槽位: [('name', '淘宝', 2, 3)]
=================================
=================================
搜狗
意图: LAUNCH
槽位: []
=================================
=================================
打开uc浏览器
意图: LAUNCH
槽位: [('name', 'uc浏', 2, 4)]
=================================
=================================
帮我打开人人
意图: LAUNCH
槽位: []
=================================
=================================
打开酷狗并随机播放
意图: LAUNCH
槽位: [('name', '酷狗', 2, 3)]
=================================
=================================
赶集
意图: LAUNCH
槽位: []
=================================
=================================
从合肥到上海可以到哪坐车?
意图: QUERY
槽位: [('Src', '合肥', 1, 2), ('Dest', '上海', 4, 5)]
=================================
=================================
从台州到金华的汽车。
意图: QUERY
槽位: [('Src', '台州', 1, 2), ('Dest', '金华', 4, 5)]
=================================
=================================
从西安到石嘴山的汽车票。
意图: QUERY
槽位: [('Src', '西安', 1, 2), ('Dest', '石嘴山', 4, 6)]
=================================
Owner
西西嘛呦
西西嘛呦
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022