A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

Overview

PyPI version Build Status Downloads Downloads/Week License

matrixprofile-ts

matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keogh and Mueen research groups at UC-Riverside and the University of New Mexico. Current implementations include MASS, STMP, STAMP, STAMPI, STOMP, SCRIMP++, and FLUSS.

Read the Target blog post here.

Further academic description can be found here.

The PyPi page for matrixprofile-ts is here

Contents

Installation

Major releases of matrixprofile-ts are available on the Python Package Index:

pip install matrixprofile-ts

Details about each release can be found here.

Quick start

>>> from matrixprofile import *
>>> import numpy as np
>>> a = np.array([0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0])
>>> matrixProfile.stomp(a,4)
(array([0., 0., 0., 0., 0., 0., 0., 0., 0.]), array([4., 5., 6., 7., 0., 1., 2., 3., 0.]))

Note that SCRIMP++ is highly recommended for calculating the Matrix Profile due to its speed and anytime ability.

Examples

Jupyter notebooks containing various examples of how to use matrixprofile-ts can be found under docs/examples.

As a basic introduction, we can take a synthetic signal and use STOMP to calculate the corresponding Matrix Profile (this is the same synthetic signal as in the Golang Matrix Profile library). Code for this example can be found here

datamp

There are several items of note:

  • The Matrix Profile value jumps at each phase change. High Matrix Profile values are associated with "discords": time series behavior that hasn't been observed before.

  • Repeated patterns in the data (or "motifs") lead to low Matrix Profile values.

We can introduce an anomaly to the end of the time series and use STAMPI to detect it

datampanom

The Matrix Profile has spiked in value, highlighting the (potential) presence of a new behavior. Note that Matrix Profile anomaly detection capabilities will depend on the nature of the data, as well as the selected subquery length parameter. Like all good algorithms, it's important to try out different parameter values.

Algorithm Comparison

This section shows the matrix profile algorithms and the time it takes to compute them. It also discusses use cases on when to use one versus another. The timing comparison is based on the synthetic sample data set to show run time speed.

For a more comprehensive runtime comparison, please review the notebook docs/examples/Algorithm Comparison.ipynb.

All time comparisons were ran on a 4 core 2.8 ghz processor with 16 GB of memory. The operating system used was Ubuntu 18.04LTS 64 bit.

Algorithm Time to Complete Description
STAMP 310 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) STAMP is an anytime algorithm that lets you sample the data set to get an approximate solution. Our implementation provides you with the option to specify the sampling size in percent format.
STOMP 79.8 ms ± 473 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) STOMP computes an exact solution in a very efficient manner. When you have a historic time series that you would like to examine, STOMP is typically the quickest at giving an exact solution.
SCRIMP++ 59 ms ± 278 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) SCRIMP++ merges the concepts of STAMP and STOMP together to provide an anytime algorithm that enables "interactive analysis speed". Essentially, it provides an exact or approximate solution in a very timely manner. Our implementation allows you to specify the max number of seconds you are willing to wait for a solution to obtain an approximate solution. If you are wanting the exact solution, it is able to provide that as well. The original authors of this algorithm suggest that SCRIMP++ can be used in all use cases.

Matrix Profile in Other Languages

Contact

Citations

  1. Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. IEEE ICDM 2016

  2. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Berisk and Eamonn Keogh (2016). EEE ICDM 2016

  3. Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery. Hoang Anh Dau and Eamonn Keogh. KDD'17, Halifax, Canada.

  4. Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at Interactive Speed. Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar and Eamonn Keogh, ICDM 2018.

  5. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liudmila Ulanova, and Eamonn Keogh. ICDM 2017.

Owner
Target
Target's official GitHub organization
Target
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023