Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Overview

Sartorius - Cell Instance Segmentation

https://www.kaggle.com/c/sartorius-cell-instance-segmentation

Environment setup

Build docker image

bash .dev_scripts/build.sh

Set env variables

export DATA_DIR="/path/to/data"
export CODE_DIR="/path/to/this/repo"

Start a docker container

bash .dev_scripts/start.sh all

Data preparation

  1. Download competition data from Kaggle
  2. Download LIVECell dataset from https://github.com/sartorius-research/LIVECell (we didn't use the data provided by Kaggle)
  3. Unzip the files as follows
├── LIVECell_dataset_2021
│   ├── images
│   ├── livecell_coco_train.json
│   ├── livecell_coco_val.json
│   └── livecell_coco_test.json
├── train
├── train_semi_supervised
└── train.csv

Start a docker container and run the following commands

mkdir /data/checkpoints/
python tools/prepare_livecell.py
python tools/prepare_kaggle.py

The results should look like the

├── LIVECell_dataset_2021
│   ├── images
│   ├── train_8class.json
│   ├── val_8class.json
│   ├── test_8class.json
│   ├── livecell_coco_train.json
│   ├── livecell_coco_val.json
│   └── livecell_coco_test.json
├── train
├── train_semi_supervised
├── checkpoints
├── train.csv
├── dtrainval.json
├── dtrain_g0.json
└── dval_g0.json

Training

Download COCO pretrained YOLOX-x weights from https://github.com/Megvii-BaseDetection/YOLOX

Convert the weights

python tools/convert_official_yolox.py /path/to/yolox_x.pth /path/to/data/checkpoints/yolox_x_coco.pth

Start a docker container and run the following commands for training

# train detector using the LIVECell dataset
python tools/det/train.py configs/det/yolox_x_livecell.py

# predict bboxes of LIVECell validataion data
python tools/det/test.py configs/det/yolox_x_livecell.py work_dirs/yolox_x_livecell/epoch_30.pth --out work_dirs/yolox_x_livecell/val_preds.pkl --eval bbox

# finetune the detector on competition data(train split)
python tools/det/train.py configs/det/yolox_x_kaggle.py --load-from work_dirs/yolox_x_livecell/epoch_15.pth

# predict bboxes of competition data(val split)
python tools/det/test.py configs/det/yolox_x_kaggle.py work_dirs/yolox_x_kaggle/epoch_30.pth --out work_dirs/yolox_x_kaggle/val_preds.pkl --eval bbox

# train segmentor using LIVECell dataset
python tools/seg/train.py configs/seg/upernet_swin-t_livecell.py

# finetune the segmentor on competition data(train split)
python tools/seg/train.py configs/seg/upernet_swin-t_kaggle.py --load-from work_dirs/upernet_swin-t_livecell/epoch_1.pth

# predict instance masks of competition data(val split)
python tools/seg/test.py configs/seg/upernet_swin-t_kaggle.py work_dirs/upernet_swin-t_kaggle/epoch_10.pth --out work_dirs/upernet_swin-t_kaggle/val_results.pkl --eval dummy
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022