This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Overview

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories

This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

1. install python environment.

Follow the instruction of "env_install.txt" to create python virtual environment and install necessary packages. The environment is tested on python >=3.6 and pytorch >=1.8.

2. Gloss alignment algorithm.

Change your dictionary data format into the data format of "wordnet_def.txt" in "data/". Run the following commands to get gloss alignment results.

cd run_align_definitions_main/
python ../model/align_definitions_main.py

3. Download the pretrained model and data.

Visit https://drive.google.com/drive/folders/1I5-iOfWr1E32ahYDCbHKCssMdm74_JXG?usp=sharing. Download the pretrained model (SemEq-General-Large which is based on Roberta-Large) and put it under run_robertaLarge_model_span_WSD_twoStageTune/ and also run_robertaLarge_model_span_FEWS_twoStageTune/. Please make sure that the downloaded model file name is "pretrained_model_CrossEntropy.pt". The script will load the general model and fine-tune on specific WSD datasets to get the expert model.

4. Fine-tune the general model to get an expert model (SemEq-Expert-Large).

All-words WSD:

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset WSD --exp_mode twoStageTune --optimizer AdamW --learning_rate 2e-6 --bert_model roberta_large --batch_size 16

Few-shot WSD (FEWS):

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset FEWS --exp_mode twoStageTune --optimizer AdamW --learning_rate 5e-6 --bert_model roberta_large --batch_size 16

5. Evaluate results.

All-words WSD: (you can try different epochs)

cd run_robertaLarge_model_span_WSD_twoStageTune/
python ../evaluate/evaluate_WSD.py --loss CrossEntropy --epoch 1
python ../evaluate/evaluate_WSD_POS.py

Few-shot WSD (FEWS): (you can try different epochs)

cd run_robertaLarge_model_span_FEWS_twoStageTune/
python ../evaluate/evaluate_FEWS.py --loss CrossEntropy --epoch 1

Note that the best results of test set on few-shot setting or zero-shot setting are selected based on dev set across epochs, respectively.

Extra. Apply the trained model to any given sentences to do WSD.

After training, you can apply the trained model (trained_model_CrossEntropy.pt) to any sentences. Examples are included in data_custom/. Examples are based on glosses in WordNet3.0.

cd run_BERT_model_span_CustomData/
python ../BERT_model_span/BERT_model_main.py --gpu_id 0 --prepare_data True --eval_dataset custom_data --exp_mode eval --bert_model roberta_large --batch_size 16

If you think this repo is useful, please cite our work. Thanks!

@inproceedings{yao-etal-2021-connect,
    title = "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories",
    author = "Yao, Wenlin  and
      Pan, Xiaoman  and
      Jin, Lifeng  and
      Chen, Jianshu  and
      Yu, Dian  and
      Yu, Dong",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.610",
    pages = "7741--7751",
}

Disclaimer: This repo is only for research purpose. It is not an officially supported Tencent product.

Owner
Research repositories.
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023