Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

Related tags

Deep Learningskflow
Overview

SkFlow has been moved to Tensorflow.

SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. The development will continue there. Please submit any issues and pull requests to Tensorflow repository instead.

This repository will ramp down, including after next Tensorflow release we will wind down code here. Please see instructions on most recent installation here.

Comments
  • How do I do multilabel image classification?

    How do I do multilabel image classification?

    Do I have to make changes in the multioutput file? I ideally want to train any model, like Inception, on my training data which has multi labels. How do I do that?

    help wanted examples 
    opened by unography 21
  • Add early stopping and reporting based on validation data

    Add early stopping and reporting based on validation data

    This PR allows a user to specify a validation dataset that are used for early stopping (and reporting). The PR was created to address issue 85

    I made changes in 3 places.

    1. The trainer now takes a dictionary containing the validation data (in the same format as the output of the data feeder's get_dict_fn).
    2. The fit method now takes arguments for val_X and val_y. It converts these into the correct format for the trainer.
    3. The example file digits.py now uses early stopping, by supplying val_X and val_y.

    I can add early stopping to other examples if this approach looks good, though their behavior should not otherwise be affected by the current PR.

    cla: yes 
    opened by dansbecker 14
  • Class weight support

    Class weight support

    Hi,

    I am using skflow.ops.dnn to classify two - classes dataset (True and False). The percentage of True example is very small, so I have an imbalanced dataset.

    It seems to me that one way to resolve the issue is to use weighted classes. However, when I look to the implementation of skflow.ops.dnn, I do not know how could I do weighted classes with DNN.

    Is it possible to do that with skflow, or is there another technique to deal with imbalanced dataset problem in skflow?

    Thanks

    enhancement 
    opened by vinhqdang 13
  • Added verbose option

    Added verbose option

    I added an option to control the "verbosity". For this, I added the parameter "verbose" in the init method of the init.py file and to the train function in the trainers.py file. In addition, I passed this argument to the "self._trainer.train()" call in the init file and added a condition to make the prints in the trainer.py file.

    cla: no 
    opened by ivallesp 12
  • Predict batch size default

    Predict batch size default

    This changes the default batch size for prediction to be the same as for training, enabling efficient grid search. Previously GridSearchCV would try to make predictions in a single batch, which could take a lot of memory.

    This also adds a simple example of using skflow with GridSearchCV.

    cla: no 
    opened by mheilman 11
  • Add example accessing of weights

    Add example accessing of weights

    It wasn't clear how to access weights using classifier.get_tensor_value('foo') syntax. This adds some examples for the CNN model. They were figured out by logging the training as though for using TensorBoard, and then running strings on the logfile to look for the right namespace.

    Is there a better way to access these weights? Or to learn their names? The logging must walk through the graph and record these names. Maybe if there were a way to quickly list all the names, that'd be enough for advanced users to figure it out.

    cla: yes 
    opened by dvbuntu 10
  • Plotting neural network built by skflow

    Plotting neural network built by skflow

    Hi,

    Sorry I asked too much.

    I think plotting is always a nice feature. Is it possible right now for skflow (or can we do that through tensorflow directly)?

    opened by vinhqdang 10
  • move monitor and logdir arguments to init

    move monitor and logdir arguments to init

    opened by mheilman 8
  • Exception when running language model example

    Exception when running language model example

    Hi,

    Thanks for making this tool. It will definitely make things easier for NN newcomers.

    I just tried running your language model example and got the following exception:

    Traceback (most recent call last):
      File "test.py", line 84, in <module>
        estimator.fit(X, y)
      File "/Users/aleksandar/tensorflow/lib/python3.5/site-packages/skflow/estimators/base.py", line 243, in fit
        feed_params_fn=self._data_feeder.get_feed_params)
      File "/Users/aleksandar/tensorflow/lib/python3.5/site-packages/skflow/trainer.py", line 114, in train
        feed_dict = feed_dict_fn()
      File "/Users/aleksandar/tensorflow/lib/python3.5/site-packages/skflow/io/data_feeder.py", line 307, in _feed_dict_fn
        inp[i, :] = six.next(self.X)
    StopIteration
    

    I made sure that my python distribution has the correct version of six. I tried running it both in a virtual environment and in a normal Python 3 distro. Any ideas what might be causing this?

    opened by savkov 7
  • another ValidationMonitor with validation(+early stopping) per epoch

    another ValidationMonitor with validation(+early stopping) per epoch

    From what I understand, the existing ValidationMonitor performs validation every [print_steps] steps, and checks for stop condition every [early_stopping_rounds] steps. I'd like to add another ValidationMonitor that performs validation once and checks for stoping condition once every epoch. Is this the recommended practice in machine learning regarding validation and early stopping? I mean I'd like to add a fit process something like this:

    def fit(self, x_train, y_train, x_validate, y_validate):
        while (current_validation_loss < previous_validation_loss):
            estimator.train_one_more_epoch(x_train, y_train)
            previous_validation_loss = current_validation_loss
            current_validation_loss = some_error(y_validate, estimator.predict(x_validate))
    
    enhancement help wanted 
    opened by alanyuchenhou 7
  • Example of language model

    Example of language model

    Add an example of language model (RNN). For example character level on sheikspear book (similar to https://github.com/sherjilozair/char-rnn-tensorflow).

    examples 
    opened by ilblackdragon 7
  • .travis.yml: The 'sudo' tag is now deprecated in Travis CI

    .travis.yml: The 'sudo' tag is now deprecated in Travis CI

    opened by cclauss 1
  • Why hasn't this repo been archived yet?

    Why hasn't this repo been archived yet?

    New versions of TF have already been released since the last commit to this repo. As far as I've understood, after having read the README file of this project, you intended to close this repo. So, why hasn't it been done yet?

    opened by nbro 0
Releases(v0.1)
  • v0.1(Feb 14, 2016)

An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022