The code submitted for the Analytics Vidhya Jobathon - February 2022

Overview

Introduction

On February 11th, 2022, Analytics Vidhya conducted a 3-day hackathon in data science. The top candidates had the chance to be selected by various participating companies across a multitude of roles, in the field of data science, analytics and business intelligence.

The objective of the hackathon was to develop a machine learning approach to predict the engagement between a user and a video. The training data already had an engagement score feature, which was a floating-point number between 0 and 5. This considerably simplified matters, as in recommender systems, calculating the engagement score is often more challenging than predicting them. The challenge, therefore, was to predict this score based on certain user related and video related features.

The list of features in the dataset is given below:

Variable Description
row_id Unique identifier of the row
user_id Unique identifier of the user
category_id Category of the video
video_id Unique identifier of the video
age Age of the user
gender Gender of the user (Male and Female)
profession Profession of the user (Student, Working Professional, Other)
followers No. of users following a particular category
views Total views of the videos present in the particular category
engagement_score Engagement score of the video for a user

Initial Ideas

Two main approaches were considered:

  • Regression Models : Since the engagement score was a continuous variable, one could use a regression model. There were several reasons that I did not use this method:

    1. The lack of features on which to build the model. The features "user_id", "category_id" and "video_id" were discrete features that would need to be encoded. Since each of these features had many unique values, using a simple One-Hot Encoding would not work due to the increase in the number of dimensions. I also considered using other categorical encoders, like the CatBoost encoder, however, I've found that most categorical encoders only do well if the target value is a categorical variable, not a continuous variable like the case here. This would leave us with only 5 features on which to make the model, which never felt enough. The 5 features also had very little scope for feature engineering, apart from some ideas on combining gender and profession and age and profession.
    2. The fact that traditional regression models have never done well as recommender systems. The now famous Netflix challenge clearly showed the advantage collaborative filtering methods had over simple regressor models.
  • Collaborative Filtering : This was the option I eventually went with. There was enough evidence to see that Collaborative Filtering was in almost all cases better than regression models. There are many different ways of implementing collaborative filtering, of which I finally decided to use the Matrix Factorization method (SVD).

Final Model

The first few runs of collaborative filtering were not very successful, with a low r2 score on the test set. However, running a Grid Search over the 3 main hyperparameters – the number of factors, the number of epochs and the learning rate, soon gave the optimal SVD. The final hyperparameters were:

  • Number of Factors: 100
  • Number of Epochs: 500,
  • Learning Rate: 0.05

The r2 score on the test set at this point was 0.506, which took me to the top of the leaderboard.

The next step was to try to improve the model further. I decided to model the errors of the SVD model, so that the predictions of the SVD could be further adjusted by the error estimates. After trying a few different models, I selected the Linear Regression model to predict the errors.

To generate the error, the SVD model first had to run on a subset of the training set, so that the model could predict the error on the validation set. On this validation set, the Linear Regression was trained. The SVD was run on 95% of the training set, therefore, the regression was done on only 5% of the entire training set. The steps in the process were:

  1. Get the engagement score predictions using the SVD model for the validation set.
  2. Calculate the error.
  3. Train the model on this validation set, using the features – "age", "followers", "views", "gender", "profession" and "initial_estimate". The target variable was the error.
  4. Finally, run both models on the actual test set, first the SVD, then the Linear Regression.
  5. The final prediction is the difference between the initial estimates and the weighted error estimates. The error estimates were given a weight of 5%, since that was the proportion of data on which the Linear Regression model was trained.
  6. There could be scenarios of the final prediction going above 5 or below 0. In such cases, adjust the prediction to either 5 or 0.

The final r2 score was 0.532, an increase of 2.9 points.

Ideas for Improvement

There are many ways I feel the model can be further improved. Some of them are:

  1. Choosing the Correct Regression Model to Predict the Error : It was quite unexpected that a weak learner like Linear Regression did better than stronger models like Random Forest and XGBoost. I feel that the main reason for this is that dataset used to train these regressors were quite small, only 5% of the entire training set. While the linear regression model worked well with such a small dataset, the more complicated models did not.
  2. Setting the Correct Subset for the SVD : After trying a few different values, the SVD subset was set at 95% while the error subset set at only 5%. The reason for setting such a high percentage was that the SVD was the more powerful algorithm and I wanted that to be as accurate as possible. However, this severely compromised the error predictor. Finding the perfect balance here could improve the model performance.
  3. Selecting the Correct Weights for the Final Prediction : The final prediction was the difference between the initial estimate and the weighted error estimate. Further analysis is needed to get the most optimum weights. Ideally, the weights should not be needed at all.
  4. Feature Engineering : The error estimator had no feature engineering at all, in fact, I removed the feature "category_id" as well. Adding new features could potentially help in improving the error estimates, however, the benefits would be low, as it accounts for only 5% of the final prediction.
More routines for operating on iterables, beyond itertools

More Itertools Python's itertools library is a gem - you can compose elegant solutions for a variety of problems with the functions it provides. In mo

2.8k Jan 02, 2023
E-Paper display loop with plugins

PaperPi V3 NOTE This version of PaperPi is under heavy development and is not ready for the average user. We are working on adding more screen compati

Aaron Ciuffo 34 Dec 30, 2022
Structured Exceptions for Python

XC: Structured exceptions for Python XC encourages a structured, disciplined approach to use of exceptions: it reduces the overhead of declaring excep

Bob Gautier 2 May 28, 2021
Bots in moderation and a game (for now)

Tutorial: come far funzionare il bot e durarlo per 24/7 (o quasi...) Ci sono 17 passi per seguire: Andare sul sito Replit https://replit.com/ Vedrete

ZacyKing 1 Dec 27, 2021
A python implementation of differentiable quality diversity.

Differentiable Quality Diversity This repository is the official implementation of Differentiable Quality Diversity.

ICAROS 41 Nov 30, 2022
Batch Python Program Verify

Batch Python Program Verify About As a TA(teaching assistant) of Programming Class, it is very annoying to test students' homework assignments one by

Han-Wei Li 7 Dec 20, 2022
Python library for the Unmand APIs.

Unmand Python SDK This is a simple package to aid in consuming the Unmand APIs. For more help, see our docs. Getting Started Create virtual environmen

Unmand 4 Jul 22, 2022
Tomador de ramos UC automatico para Windows, Linux y macOS

auto-ramos v2.0 Tomador de ramos UC automatico para Windows, Linux y macOS Funcion Este script de Python tiene como principal objetivo hacer que la to

Open Source eUC 13 Jun 29, 2022
Something like Asteroids but not really, done in CircuitPython

CircuitPython Staroids Something like Asteroids, done in CircuitPython. Works with FunHouse, MacroPad, Pybadge, EdgeBadge, CLUE, and Pygamer. circuitp

Tod E. Kurt 14 May 31, 2022
Node editor view image node

A Blender addon to quickly view images from image nodes in Blender's image viewer.

5 Nov 27, 2022
Choice Coin 633 Dec 23, 2022
This is Gaurav's IP Project Completed in the year session of 2021-2022.

The Analyser by Gaurav Rayat Why this Project? Today we are continuously hearing about growth in Crime rates and the number of murders executed day by

1 Dec 30, 2021
python package to showcase, test and build your own version of Pickhardt Payments

Pickhardt Payments Package The pickhardtpayments package is a collection of classes and interfaces that help you to test and implement your dialect of

Rene Pickhardt 37 Dec 18, 2022
This library attempts to abstract the handling of Sigma rules in Python

This library attempts to abstract the handling of Sigma rules in Python. The rules are parsed using a schema defined with pydantic, and can be easily loaded from YAML files into a structured Python o

Caleb Stewart 44 Oct 29, 2022
A toolkit for developing and deploying serverless Python code in AWS Lambda.

Python-lambda is a toolset for developing and deploying serverless Python code in AWS Lambda. A call for contributors With python-lambda and pytube bo

Nick Ficano 1.4k Jan 03, 2023
Run python scripts and pass data between multiple python and node processes using this npm module

Run python scripts and pass data between multiple python and node processes using this npm module. process-communication has a event based architecture for interacting with python data and errors ins

Tyler Laceby 2 Aug 06, 2021
A Python script to convert your favorite TV series into an Anki deck.

Ankiniser A Python3.8 script to convert your favorite TV series into an Anki deck. How to install? Download the script with git or download it manualy

37 Nov 03, 2022
Repository specifically for tcss503-22-wi Students

TCSS503: Algorithms and Problem Solving for Software Developers Course Description Introduces advanced data structures and key algorithmic techniques

Kevin E. Anderson 3 Nov 08, 2022
Like Docker, but for Squeak. You know, for kids.

Squeaker Like Docker, but for Smalltalk images. You know, for kids. It's a small program that helps in automated derivation of configured Smalltalk im

Tony Garnock-Jones 14 Sep 11, 2022
Introduction to Databases Coursework 2 (SQL) - dataset generator

Introduction to Databases Coursework 2 (SQL) - dataset generator This is python script generates a text file with insert queries for the schema.sql fi

Javier Bosch 1 Nov 08, 2021