2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Overview

Fluid Simulation

image

Usage

  1. Download this repo and store it in your computer.
  2. Open a terminal and go to the root directory of this folder.
  3. Make sure you have installed the needed dependencies by typing:
$ pip install numpy
$ pip install matplotlib
$ pip install ffmpeg

Note: Go to Install FFmpeg on Windows section if you haven't installed FFmpeg software locally before. It must be added to PATH so that videos can be saved.

  1. Type to run:
$ python fluid.py -i config.json

Where the config.json file is the input file inside the same folder as main.py file.

The Development Log file is also located in the root directory of this repository, where all the logic and structure of the programming done is explained.

Input

The config.json file is the input file you must provide as a command parameter. The structure of the file must be the following:

  1. color: string that contains any of the available options in colors.py.

  2. frames: integer that determines the frame duration of the video.

  3. sources: an array of dictionaries. Each dictionary in the array represents an emitter, which is a source of density and velocity. There cannot be emitters of just velocity or just density, because it would not make sense. Emitters must contain:

    • position: x and y integers, which are the top left position.
    • size: integer that defines an NxN square emitter.
    • density: integer that represents the amount of density of the emitter.
    • velocity:
      • x and y float/integer numbers that represent the velocity direction of the emitter.
      • behaviour: string that contains any of the available options in behaviours.py.
      • factor: float integer/float number that will act as a parameter depending on the behaviour chosen.
  4. objects: an array of dictionaries. Each dictionary in the array represents an object, where each of the objects must contain:

    • position: x and y integers, which are the top left position.
    • size: height and width integers, which will be the shape of a height x width rectangular object.
    • density: integer that represents the amount of density of the object. An object is indeed having a constant amount of density that will not be modified by the liquid, since it's a solid, but you need to determine the density or 'color' the object will have visually.

The folder evidences contains a series of example JSON files and their output videos, with both simple and complex examples of the output.

Features

  • Color Scheme

Inside the config.json file, change the color property and write the color scheme you want from the list below.

image

For example, by having 'hot' as the color property in the json file, you get the following:

image

  • Sources Placement

Inside the config.json file, you can specify the characteristics of an emitter you want to place. An emitter is a source of density and certain velocity.

image

  • Objects Placement

Inside the config.json file, you can specify the position and shape of a solid object inside the fluid.

image

  • Velocity Behaviours

Inside the config.json file, change the behaviour property inside velocity and write the behaviour of the velocity of said emitter you wish for. Supported options are:

  1. zigzag vertical,

image

  1. zigzag horizontal, that works the same as the above but horizontally.

  2. vortex,

image

  1. noise,

image

  1. fourier (left), which is a bit like a zigzag (right) but noisier.

image

  1. motor

image

Install FFmpeg on Windows

Apart from the pip installation of ffmpeg, you need to install ffmpeg for your machine OS (in my case, Windows 10) by going to either of the following links:

  • ffmpeg.org

    • Click on the Windows icon.
    • Click on gyan dev option.
  • gyan.dev

    • Go to the Git section and click on the first link.
    • Extract the folder from the zip.
    • Cut and paste the folder in your C: disk.
    • Add C:\FFmpeg\bin to PATH by typing in a terminal with admin rights:
     $ setx /m PATH "C:\FFmpeg\bin;%PATH%"
    
    • Open another terminal and test the installation by typing:
     $ ffmpeg -version
    

Handy Links

Owner
Mariana Ávalos Arce
I like code and math. I like football too. [Software & Computer Graphics]
Mariana Ávalos Arce
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

6.2k Jan 01, 2023
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022