PyEmits, a python package for easy manipulation in time-series data.

Related tags

Data AnalysisPyEmits
Overview

Project Icon

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life.

  • Engineering
  • FSI industry (Financial Services Industry)
  • FMCG (Fast Moving Consumer Good)

Data scientist's work consists of:

  • forecasting
  • prediction/simulation
  • data prepration
  • cleansing
  • anomaly detection
  • descriptive data analysis/exploratory data analysis

each new business unit shall build the following wheels again and again

  1. data pipeline
    1. extraction
    2. transformation
      1. cleansing
      2. feature engineering
      3. remove outliers
      4. AI landing for prediction, forecasting
    3. write it back to database
  2. ml framework
    1. multiple model training
    2. multiple model prediction
    3. kfold validation
    4. anomaly detection
    5. forecasting
    6. deep learning model in easy way
    7. ensemble modelling
  3. exploratory data analysis
    1. descriptive data analysis
    2. ...

That's why I create this project, also for fun. haha

This project is under active development, free to use (Apache 2.0) I am happy to see anyone can contribute for more advancement on features

Install

pip install pyemits

Features highlight

  1. Easy training
import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel

X = np.random.randint(1, 100, size=(1000, 10))
y = np.random.randint(1, 100, size=(1000, 1))

raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer(['XGBoost'], [None], raw_data_model)
trainer.fit()
  1. Accept neural network as model
import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel
from pyemits.core.ml.regression.nn import KerasWrapper

X = np.random.randint(1, 100, size=(1000, 10, 10))
y = np.random.randint(1, 100, size=(1000, 4))

keras_lstm_model = KerasWrapper.from_simple_lstm_model((10, 10), 4)
raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer([keras_lstm_model], [None], raw_data_model)
trainer.fit()

also keep flexibility on customized model

import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel
from pyemits.core.ml.regression.nn import KerasWrapper

X = np.random.randint(1, 100, size=(1000, 10, 10))
y = np.random.randint(1, 100, size=(1000, 4))

from keras.layers import Dense, Dropout, LSTM
from keras import Sequential

model = Sequential()
model.add(LSTM(128,
               activation='softmax',
               input_shape=(10, 10),
               ))
model.add(Dropout(0.1))
model.add(Dense(4))
model.compile(loss='mse', optimizer='adam', metrics=['mse'])

keras_lstm_model = KerasWrapper(model, nickname='LSTM')
raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer([keras_lstm_model], [None], raw_data_model)
trainer.fit()

or attach it in algo config

import numpy as np

from pyemits.core.ml.regression.trainer import RegTrainer, RegressionDataModel
from pyemits.core.ml.regression.nn import KerasWrapper
from pyemits.common.config_model import KerasSequentialConfig

X = np.random.randint(1, 100, size=(1000, 10, 10))
y = np.random.randint(1, 100, size=(1000, 4))

from keras.layers import Dense, Dropout, LSTM
from keras import Sequential

keras_lstm_model = KerasWrapper(nickname='LSTM')
config = KerasSequentialConfig(layer=[LSTM(128,
                                           activation='softmax',
                                           input_shape=(10, 10),
                                           ),
                                      Dropout(0.1),
                                      Dense(4)],
                               compile=dict(loss='mse', optimizer='adam', metrics=['mse']))

raw_data_model = RegressionDataModel(X, y)
trainer = RegTrainer([keras_lstm_model],
                     [config],
                     raw_data_model, 
                     {'fit_config' : [dict(epochs=10, batch_size=32)]})
trainer.fit()

PyTorch, MXNet under development you can leave me a message if you want to contribute

  1. MultiOutput training
import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel, MultiOutputRegTrainer
from pyemits.core.preprocessing.splitting import SlidingWindowSplitter

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

# when use auto-regressive like MultiOutput, pls set ravel = True
# ravel = False, when you are using LSTM which support multiple dimension
splitter = SlidingWindowSplitter(24,24,ravel=True)
X, y = splitter.split(X, y)

raw_data_model = RegressionDataModel(X,y)
trainer = MultiOutputRegTrainer(['XGBoost'], [None], raw_data_model)
trainer.fit()
  1. Parallel training
    • provide fast training using parallel job
    • use RegTrainer as base, but add Parallel running
import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel, ParallelRegTrainer

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = ParallelRegTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model)
trainer.fit()

or you can use RegTrainer for multiple model, but it is not in Parallel job

import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel,  RegTrainer

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = RegTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model)
trainer.fit()
  1. KFold training
    • KFoldConfig is global config, will apply to all
import numpy as np 

from pyemits.core.ml.regression.trainer import RegressionDataModel,  KFoldCVTrainer
from pyemits.common.config_model import KFoldConfig

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = KFoldCVTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model, {'kfold_config':KFoldConfig(n_splits=10)})
trainer.fit()
  1. Easy prediction
import numpy as np 
from pyemits.core.ml.regression.trainer import RegressionDataModel,  RegTrainer
from pyemits.core.ml.regression.predictor import RegPredictor

X = np.random.randint(1, 100, size=(10000, 1))
y = np.random.randint(1, 100, size=(10000, 1))

raw_data_model = RegressionDataModel(X,y)
trainer = RegTrainer(['XGBoost', 'LightGBM'], [None, None], raw_data_model)
trainer.fit()

predictor = RegPredictor(trainer.clf_models, 'RegTrainer')
predictor.predict(RegressionDataModel(X))
  1. Forecast at scale
  2. Data Model
from pyemits.common.data_model import RegressionDataModel
import numpy as np
X = np.random.randint(1, 100, size=(1000,10,10))
y = np.random.randint(1, 100, size=(1000, 1))

data_model = RegressionDataModel(X, y)

data_model._update_variable('X_shape', (1000,10,10))
data_model.X_shape

data_model.add_meta_data('X_shape', (1000,10,10))
data_model.meta_data
  1. Anomaly detection (under development)
  2. Evaluation (under development)
    • see module: evaluation
    • backtesting
    • model evaluation
  3. Ensemble (under development)
    • blending
    • stacking
    • voting
    • by combo package
      • moa
      • aom
      • average
      • median
      • maximization
  4. IO
    • db connection
    • local
  5. dashboard ???
  6. other miscellaneous feature
    • continuous evaluation
    • aggregation
    • dimensional reduction
    • data profile (intensive data overview)
  7. to be confirmed

References

the following libraries gave me some idea/insight

  1. greykit
    1. changepoint detection
    2. model summary
    3. seaonality
  2. pytorch-forecasting
  3. darts
  4. pyaf
  5. orbit
  6. kats/prophets by facebook
  7. sktime
  8. gluon ts
  9. tslearn
  10. pyts
  11. luminaries
  12. tods
  13. autots
  14. pyodds
  15. scikit-hts
You might also like...
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

A powerful data analysis package based on mathematical step functions.  Strongly aligned with pandas.
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

small package with utility functions for analyzing (fly) calcium imaging data
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

 Integrate bus data from a variety of sources (batch processing and real time processing).
Integrate bus data from a variety of sources (batch processing and real time processing).

Purpose: This is integrate bus data from a variety of sources such as: csv, json api, sensor data ... into Relational Database (batch processing and r

A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Releases(v0.1.2)
Owner
Thompson
Data Analyst, Scientist, Engineer, Research and Development
Thompson
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
CRISP: Critical Path Analysis of Microservice Traces

CRISP: Critical Path Analysis of Microservice Traces This repo contains code to compute and present critical path summary from Jaeger microservice tra

Uber Research 110 Jan 06, 2023
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023