Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Related tags

Deep LearningVisualDS
Overview

Distant Supervision for Scene Graph Generation

Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Introduction

The paper applies distant supervision to visual relation detection. The intuition of distant supervision is that possible predicates between entity pairs are highly dependent on the entity types. For example, there might be ride on, feed between human and horse in images, but it is less likely to be covering. Thus, we apply this correlation to take advantage of unlabeled data. Given the knowledge base containing possible combinations between entity types and predicates, our framework enables distantly supervised training without using any human-annotated relation data, and semi-supervised training that incorporates both human-labeled data and distantly labeled data. To build the knowledge base, we parse all possible (subject, predicate, object) triplets from Conceptual Caption dataset, resulting in a knowledge base containing 1.9M distinct relational triples.

Code

Thanks to the elegant code from Scene-Graph-Benchmark.pytorch. This project is built on their framework. There are also some differences from their settings. We show the differences in a later section.

The Illustration of Distant Supervision

alt text

Installation

Check INSTALL.md for installation instructions.

Dataset

Check DATASET.md for instructions of dataset preprocessing.

Metrics

Our metrics are directly adapted from Scene-Graph-Benchmark.pytorch.

Object Detector

Download Pre-trained Detector

In generally SGG tasks, the detector is pre-trained on the object bounding box annotations on training set. We directly use the pre-trained Faster R-CNN provided by Scene-Graph-Benchmark.pytorch, because our 20 category setting and their 50 category setting have the same training set.

After you download the Faster R-CNN model, please extract all the files to the directory /home/username/checkpoints/pretrained_faster_rcnn. To train your own Faster R-CNN model, please follow the next section.

The above pre-trained Faster R-CNN model achives 38.52/26.35/28.14 mAp on VG train/val/test set respectively.

Pre-train Your Own Detector

In this work, we do not modify the Faster R-CNN part. The training process can be referred to the origin code.

EM Algorithm based Training

All commands of training are saved in the directory cmds/. The directory of cmds looks like:

cmds/  
├── 20 
│   └── motif
│       ├── predcls
│       │   ├── ds \\ distant supervision which is weakly supervised training
│       │   │   ├── em_M_step1.sh
│       │   │   ├── em_E_step2.sh
│       │   │   ├── em_M_step2.sh
│       │   │   ├── em_M_step1_wclip.sh
│       │   │   ├── em_E_step2_wclip.sh
│       │   │   └── em_M_step2_wclip.sh
│       │   ├── semi \\ semi-supervised training 
│       │   │   ├── em_E_step1.sh
│       │   │   ├── em_M_step1.sh
│       │   │   ├── em_E_step2.sh
│       │   │   └── em_M_step2.sh
│       │   └── sup
│       │       ├── train.sh
│       │       └── val.sh
│       │
│       ├── sgcls
│       │   ...
│       │
│       ├── sgdet
│       │   ...

Generally, we use an EM algorithm based training, which means the model is trained iteratively. In E-step, we estimate the predicate label distribution between entity pairs. In M-step, we optimize the model with estimated predicate label distribution. For example, the em_E_step1 means the initialization of predicate label distribution, and in em_M_step1 the model will be optimized on the label estimation.

All checkpoints can be downloaded from MODEL_ZOO.md.

Preparation

Before running the code, you need to specify the current path as environment variable SG and the experiments' root directory as EXP.

# specify current directory as SG, e.g.:
export SG=~/VisualDS
# specify experiment directory, e.g.:
export EXP=~/exps

Weakly Supervised Training

Weakly supervised training can be done with only knowledge base or can also use external semantic signals to train a better model. As for the external semantic signals, we use currently popular CLIP to initialize the probability of possible predicates between entity pairs.

  1. w/o CLIP training for Predcls:
# no need for em_E_step1
sh cmds/20/motif/predcls/ds/em_M_step1.sh
sh cmds/20/motif/predcls/ds/em_E_step2.sh
sh cmds/20/motif/predcls/ds/em_M_step2.sh
  1. with CLIP training for Predcls:

Before training, please ensure datasets/vg/20/cc_clip_logits.pk is downloaded.

# the em_E_step1 is conducted by CLIP
sh cmds/20/motif/predcls/ds/em_M_step1_wclip.sh
sh cmds/20/motif/predcls/ds/em_E_step2_wclip.sh
sh cmds/20/motif/predcls/ds/em_M_step2_wclip.sh
  1. training for Sgcls and Sgdet:

E_step results of Predcls are directly used for Sgcls and Sgdet. Thus, there is no em_E_step.sh for Sgcls and Sgdet.

Semi-Supervised Training

In semi-supervised training, we use supervised model trained with labeled data to estimate predicate labels for entity pairs. So before conduct semi-supervised training, we should conduct a normal supervised training on Predcls task first:

sh cmds/20/motif/predcls/sup/train.sh

Or just download the trained model here, and put it into $EXP/20/predcls/sup/sup.

Noted that, for three tasks Predcls, Sgcls, Sgdet, we all use supervised model of Predcls task to initialize predicate label distributions. After the preparation, we can run:

sh cmds/20/motif/predcls/semi/em_E_step1.sh
sh cmds/20/motif/predcls/semi/em_M_step1.sh
sh cmds/20/motif/predcls/semi/em_E_step2.sh
sh cmds/20/motif/predcls/semi/em_M_step2.sh

Difference from Scene-Graph-Benchmark.pytorch

  1. Fix a bug in evaluation.

    We found that in previous evaluation, there are sometimes duplicated triplets in images, e.g. (1-man, ride, 2-horse)*3. We fix this small bug and use only unique triplets. By fixing the bug, the performance of the model will decrease somewhat. For example, the [email protected] of predcls task will decrease about 1~3 points.

  2. We conduct experiments on 20 categories predicate setting rather than 50 categories.

  3. In evaluation, weakly supervised trained model uses logits rather than softmax normalized scores for relation triplets ranking.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022