Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Related tags

Deep LearningVisualDS
Overview

Distant Supervision for Scene Graph Generation

Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Introduction

The paper applies distant supervision to visual relation detection. The intuition of distant supervision is that possible predicates between entity pairs are highly dependent on the entity types. For example, there might be ride on, feed between human and horse in images, but it is less likely to be covering. Thus, we apply this correlation to take advantage of unlabeled data. Given the knowledge base containing possible combinations between entity types and predicates, our framework enables distantly supervised training without using any human-annotated relation data, and semi-supervised training that incorporates both human-labeled data and distantly labeled data. To build the knowledge base, we parse all possible (subject, predicate, object) triplets from Conceptual Caption dataset, resulting in a knowledge base containing 1.9M distinct relational triples.

Code

Thanks to the elegant code from Scene-Graph-Benchmark.pytorch. This project is built on their framework. There are also some differences from their settings. We show the differences in a later section.

The Illustration of Distant Supervision

alt text

Installation

Check INSTALL.md for installation instructions.

Dataset

Check DATASET.md for instructions of dataset preprocessing.

Metrics

Our metrics are directly adapted from Scene-Graph-Benchmark.pytorch.

Object Detector

Download Pre-trained Detector

In generally SGG tasks, the detector is pre-trained on the object bounding box annotations on training set. We directly use the pre-trained Faster R-CNN provided by Scene-Graph-Benchmark.pytorch, because our 20 category setting and their 50 category setting have the same training set.

After you download the Faster R-CNN model, please extract all the files to the directory /home/username/checkpoints/pretrained_faster_rcnn. To train your own Faster R-CNN model, please follow the next section.

The above pre-trained Faster R-CNN model achives 38.52/26.35/28.14 mAp on VG train/val/test set respectively.

Pre-train Your Own Detector

In this work, we do not modify the Faster R-CNN part. The training process can be referred to the origin code.

EM Algorithm based Training

All commands of training are saved in the directory cmds/. The directory of cmds looks like:

cmds/  
├── 20 
│   └── motif
│       ├── predcls
│       │   ├── ds \\ distant supervision which is weakly supervised training
│       │   │   ├── em_M_step1.sh
│       │   │   ├── em_E_step2.sh
│       │   │   ├── em_M_step2.sh
│       │   │   ├── em_M_step1_wclip.sh
│       │   │   ├── em_E_step2_wclip.sh
│       │   │   └── em_M_step2_wclip.sh
│       │   ├── semi \\ semi-supervised training 
│       │   │   ├── em_E_step1.sh
│       │   │   ├── em_M_step1.sh
│       │   │   ├── em_E_step2.sh
│       │   │   └── em_M_step2.sh
│       │   └── sup
│       │       ├── train.sh
│       │       └── val.sh
│       │
│       ├── sgcls
│       │   ...
│       │
│       ├── sgdet
│       │   ...

Generally, we use an EM algorithm based training, which means the model is trained iteratively. In E-step, we estimate the predicate label distribution between entity pairs. In M-step, we optimize the model with estimated predicate label distribution. For example, the em_E_step1 means the initialization of predicate label distribution, and in em_M_step1 the model will be optimized on the label estimation.

All checkpoints can be downloaded from MODEL_ZOO.md.

Preparation

Before running the code, you need to specify the current path as environment variable SG and the experiments' root directory as EXP.

# specify current directory as SG, e.g.:
export SG=~/VisualDS
# specify experiment directory, e.g.:
export EXP=~/exps

Weakly Supervised Training

Weakly supervised training can be done with only knowledge base or can also use external semantic signals to train a better model. As for the external semantic signals, we use currently popular CLIP to initialize the probability of possible predicates between entity pairs.

  1. w/o CLIP training for Predcls:
# no need for em_E_step1
sh cmds/20/motif/predcls/ds/em_M_step1.sh
sh cmds/20/motif/predcls/ds/em_E_step2.sh
sh cmds/20/motif/predcls/ds/em_M_step2.sh
  1. with CLIP training for Predcls:

Before training, please ensure datasets/vg/20/cc_clip_logits.pk is downloaded.

# the em_E_step1 is conducted by CLIP
sh cmds/20/motif/predcls/ds/em_M_step1_wclip.sh
sh cmds/20/motif/predcls/ds/em_E_step2_wclip.sh
sh cmds/20/motif/predcls/ds/em_M_step2_wclip.sh
  1. training for Sgcls and Sgdet:

E_step results of Predcls are directly used for Sgcls and Sgdet. Thus, there is no em_E_step.sh for Sgcls and Sgdet.

Semi-Supervised Training

In semi-supervised training, we use supervised model trained with labeled data to estimate predicate labels for entity pairs. So before conduct semi-supervised training, we should conduct a normal supervised training on Predcls task first:

sh cmds/20/motif/predcls/sup/train.sh

Or just download the trained model here, and put it into $EXP/20/predcls/sup/sup.

Noted that, for three tasks Predcls, Sgcls, Sgdet, we all use supervised model of Predcls task to initialize predicate label distributions. After the preparation, we can run:

sh cmds/20/motif/predcls/semi/em_E_step1.sh
sh cmds/20/motif/predcls/semi/em_M_step1.sh
sh cmds/20/motif/predcls/semi/em_E_step2.sh
sh cmds/20/motif/predcls/semi/em_M_step2.sh

Difference from Scene-Graph-Benchmark.pytorch

  1. Fix a bug in evaluation.

    We found that in previous evaluation, there are sometimes duplicated triplets in images, e.g. (1-man, ride, 2-horse)*3. We fix this small bug and use only unique triplets. By fixing the bug, the performance of the model will decrease somewhat. For example, the [email protected] of predcls task will decrease about 1~3 points.

  2. We conduct experiments on 20 categories predicate setting rather than 50 categories.

  3. In evaluation, weakly supervised trained model uses logits rather than softmax normalized scores for relation triplets ranking.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022