Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Overview

EAN: Event Adaptive Network

PWC

PyTorch Implementation of paper:

EAN: Event Adaptive Network for Enhanced Action Recognition

Yuan Tian, Yichao Yan, Xiongkuo Min, Guo Lu, Guangtao Zhai, Guodong Guo, and Zhiyong Gao

[ArXiv]

Main Contribution

Efficiently modeling spatial-temporal information in videos is crucial for action recognition. In this paper, we propose a unified action recognition framework to investigate the dynamic nature of video content by introducing the following designs. First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events. Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer, which yields a sparse paradigm. We call the proposed framework as Event Adaptive Network (EAN) because both key designs are adaptive to the input video content. To exploit the short-term motions within local segments, we propose a novel and efficient Latent Motion Code (LMC) module, further improving the performance of the framework.

Content

Dependencies

Please make sure the following libraries are installed successfully:

Data Preparation

Following the common practice, we need to first extract videos into frames for fast data loading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Something-Something-V1 and V2, Kinetics, Diving48 datasets with this codebase. Basically, the processing of video data can be summarized into 3 steps:

  1. Extract frames from videos:

  2. Generate file lists needed for dataloader:

    • Each line of the list file will contain a tuple of (extracted video frame folder name, video frame number, and video groundtruth class). A list file looks like this:

      video_frame_folder 100 10
      video_2_frame_folder 150 31
      ...
      
    • Or you can use off-the-shelf tools provided by the repos: data_process/gen_label_xxx.py

  3. Edit dataset config information in datasets_video.py

Pretrained Models

Here, we provide the pretrained models of EAN models on Something-Something-V1 datasets. Recognizing actions in this dataset requires strong temporal modeling ability. EAN achieves state-of-the-art performance on these datasets. Notably, our method even surpasses optical flow based methods while with only RGB frames as input.

Something-Something-V1

Model Backbone FLOPs Val Top1 Val Top5 Checkpoints
EAN8F(RGB+LMC) ResNet-50 37G 53.4 81.1 [Jianguo Cloud]
EAN16(RGB+LMC) 74G 54.7 82.3
EAN16+8(RGB+LMC) 111G 57.2 83.9
EAN2 x (16+8)(RGB+LMC) 222G 57.5 84.3

Testing

For example, to test the EAN models on Something-Something-V1, you can first put the downloaded .pth.tar files into the "pretrained" folder and then run:

# test EAN model with 8frames clip
bash scripts/test/sthv1/RGB_LMC_8F.sh

# test EAN model with 16frames clip
bash scripts/test/sthv1/RGB_LMC_16F.sh

Training

We provided several scripts to train EAN with this repo, please refer to "scripts" folder for more details. For example, to train PAN on Something-Something-V1, you can run:

# train EAN model with 8frames clip
bash scripts/train/sthv1/RGB_LMC_8F.sh

Notice that you should scale up the learning rate with batch size. For example, if you use a batch size of 32 you should set learning rate to 0.005.

Other Info

References

This repository is built upon the following baseline implementations for the action recognition task.

Citation

Please [★star] this repo and [cite] the following arXiv paper if you feel our EAN useful to your research:

@misc{tian2021ean,
      title={EAN: Event Adaptive Network for Enhanced Action Recognition}, 
      author={Yuan Tian and Yichao Yan and Xiongkuo Min and Guo Lu and Guangtao Zhai and Guodong Guo and Zhiyong Gao},
      year={2021},
      eprint={2107.10771},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For any questions, please feel free to open an issue or contact:

Yuan Tian: [email protected]
Owner
TianYuan
TianYuan
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023