Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Overview

Embedding Transfer with Label Relaxation for Improved Metric Learning

Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label Relaxation for Improved Metric Learning.

Embedding trnasfer with Relaxed Contrastive Loss improves performance, or reduces sizes and output dimensions of embedding model effectively.

This repository provides source code of experiments on three datasets (CUB-200-2011, Cars-196 and Stanford Online Products) including relaxed contrastive loss, relaxed MS loss, and 6 other knowledge distillation or embedding transfer methods such as:

  • FitNet, Fitnets: hints for thin deep nets
  • Attention, Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
  • CRD, Contrastive Representation Distillation
  • DarkRank, Darkrank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
  • PKT, Learning Deep Representations with Probabilistic Knowledge Transfer
  • RKD, Relational Knowledge Distillation

Overview

Relaxed Contrastive Loss

  • Relaxed contrastive loss exploits pairwise similarities between samples in the source embedding space as relaxed labels, and transfers them through a contrastive loss used for learning target embedding models.

graph

Experimental Restuls

  • Our method achieves the state of the art when embedding dimension is 512, and is as competitive as recent metric learning models even with a substantially smaller embedding dimension. In all experiments, it is superior to other embedding transfer techniques.

graph

Requirements

Prepare Datasets

  1. Download three public benchmarks for deep metric learning.

  2. Extract the tgz or zip file into ./data/ (Exceptionally, for Cars-196, put the files in a ./data/cars196)

Prepare Pretrained Source models

Download the pretrained source models using ./scripts/download_pretrained_source_models.sh.

sh scripts/download_pretrained_source_models.sh

Training Target Embedding Network with Relaxed Contrastive Loss

Self-transfer Setting

  • Transfer the knowledge of source model to target model with the same architecture and embedding dimension for performance improvement.
  • Source Embedding Network (BN–Inception, 512 dim) đź ˘ Target Embedding Network (BN–Inception, 512 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \ 
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN512 69.9 79.5 86.2 87.6 92.2 95.6 78.7 90.4 96.1
Attention BN512 66.3 76.2 84.5 84.7 90.6 94.2 78.2 90.4 96.2
CRD BN512 67.7 78.1 85.7 85.3 91.1 94.8 78.1 90.2 95.8
DarkRank BN512 66.7 76.5 84.8 84.0 90.0 93.8 75.7 88.3 95.3
PKT BN512 69.1 78.8 86.4 86.4 91.6 94.9 78.4 90.2 96.0
RKD BN512 70.9 80.8 87.5 88.9 93.5 96.4 78.5 90.2 96.0
Ours BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3

Dimensionality Reduction Setting

  • Transfer to the same architecture with a lower embedding dimension for efficient image retrieval.
  • Source Embedding Network (BN–Inception, 512 dim) đź ˘ Target Embedding Network (BN–Inception, 64 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN64 62.3 73.8 83.0 81.2 87.7 92.5 76.6 89.3 95.4
Attention BN64 58.3 69.4 79.1 79.2 86.7 91.8 76.3 89.2 95.4
CRD BN64 60.9 72.7 81.7 79.2 87.2 92.1 75.5 88.3 95.3
DarkRank BN64 63.5 74.3 83.1 78.1 85.9 91.1 73.9 87.5 94.8
PKT BN64 63.6 75.8 84.0 82.2 88.7 93.5 74.6 87.3 94.2
RKD BN64 65.8 76.7 85.0 83.7 89.9 94.1 70.2 83.8 92.1
Ours BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8

Model Compression Setting

  • Transfer to a smaller network with a lower embedding dimension for usage in low-power and resource limited devices.
  • Source Embedding Network (ResNet50, 512 dim) đź ˘ Target Embedding Network (ResNet18, 128 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cub_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cars_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/resnet50/SOP_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA R50512 69.9 79.6 88.6 87.7 92.7 95.5 80.5 91.8 98.8
FitNet R18128 61.0 72.2 81.1 78.5 86.0 91.4 76.7 89.4 95.5
Attention R18128 61.0 71.7 81.5 78.6 85.9 91.0 76.4 89.3 95.5
CRD R18128 62.8 73.8 83.2 80.6 87.9 92.5 76.2 88.9 95.3
DarkRank R18128 61.2 72.5 82.0 75.3 83.6 89.4 72.7 86.7 94.5
PKT R18128 65.0 75.6 84.8 81.6 88.8 93.4 76.9 89.2 95.5
RKD R18128 65.8 76.3 84.8 84.2 90.4 94.3 75.7 88.4 95.1
Ours R18128 66.6 78.1 85.9 86.0 91.6 95.3 78.4 90.4 96.1

Train Source Embedding Network

This repository also provides code for training source embedding network with several losses as well as proxy-anchor loss. For details on how to train the source embedding network, please see the Proxy-Anchor Loss repository.

  • For example, training source embedding network (BN–Inception, 512 dim) with Proxy-Anchor Loss on the CUB-200-2011 as
python code/train_source.py --gpu-id 0 --loss Proxy_Anchor --model bn_inception \
--embedding-size 512 --batch-size 180 --lr 1e-4 --dataset cub \
--warm 1 --bn-freeze 1 --lr-decay-step 10 

Evaluating Image Retrieval

Follow the below steps to evaluate the trained model.
Trained best model will be saved in the ./logs/folder_name.

# The parameters should be changed according to the model to be evaluated.
python code/evaluate.py --gpu-id 0 \
                   --batch-size 120 \
                   --model bn_inception \
                   --embedding-size 512 \
                   --dataset cub \
                   --ckpt /set/your/model/path/best_model.pth

Acknowledgements

Our source code is modified and adapted on these great repositories:

Citation

If you use this method or this code in your research, please cite as:

@inproceedings{kim2021embedding,
  title={Embedding Transfer with Label Relaxation for Improved Metric Learning},
  author={Kim, Sungyeon and Kim, Dongwon and Cho, Minsu and Kwak, Suha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Sungyeon Kim
Sungyeon Kim
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022