Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

Overview

CNNs fruits360

GitHub GitHub Repo stars GitHub repo size

Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNN on a pretrained model

Build a CNN on a pretrained model, ResNet50.
Finetune the pretrained model when training my CNN.

定義卷積神經網路架構:

def fruit_model_on_pretrained(height,width,channel):
    model = Sequential(name="fruit_pretrained")

    pretrained = tf.keras.applications.resnet.ResNet50(include_top=False,input_shape=(100,100,3))
    model.add(pretrained)
    model.add(tf.keras.layers.GlobalAveragePooling2D())
    model.add(Dense(16, activation='relu'))
    model.add(Dense(16, activation='relu'))
    model.add(Dense(2,activation='softmax'))
    pretrained.trainable = False
    model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),optimizer='adam', metrics=['accuracy'])
    return model

    model = fruit_model_on_pretrained(100,100,3)
    model.summary()

CNN's neural architecture include ResBlock

Build a CNN whose neural architecture includes ResBlock.

定義卷積神經網路架構:

images = keras.layers.Input(x_train.shape[1:])

x = keras.layers.Conv2D(filters=16, kernel_size=[1,1], padding='same')(images)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=16, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_1")(net)
x = keras.layers.Conv2D(filters=32, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=32, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])net=keras.layers.BatchNormalization()(net)
net = keras.layers.Activation("relu")(net)
net = keras.layers.MaxPooling2D(pool_size=(2,2),name="block_2")(net)

x = keras.layers.Conv2D(filters=64, kernel_size=[1,1], padding='same')(net)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding="same")(x)
block = keras.layers.BatchNormalization()(block)
block = keras.layers.Activation("relu")(block)
block = keras.layers.Conv2D(filters=64, kernel_size=[3,3],padding="same")(block)
net = keras.layers.add([x,block])
net = keras.layers.Activation("relu", name="block_3")(net)

net = keras.layers.BatchNormalization()(net)
net = keras.layers.Dropout(0.25)(net)

net = keras.layers.GlobalAveragePooling2D()(net)
net = keras.layers.Dense(units=nclasses,activation="softmax")(net)

model = keras.models.Model(inputs=images,outputs=net)
model.summary()

License:MIT

This package is MIT licensed.

Owner
Ricky Chuang
Google DSC Lead at NTOU
Ricky Chuang
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022