TLA - Twitter Linguistic Analysis

Related tags

Text Data & NLPTLA
Overview

TLA - Twitter Linguistic Analysis

Tool for linguistic analysis of communities

TLA is built using PyTorch, Transformers and several other State-of-the-Art machine learning techniques and it aims to expedite and structure the cumbersome process of collecting, labeling, and analyzing data from Twitter for a corpus of languages while providing detailed labeled datasets for all the languages. The analysis provided by TLA will also go a long way in understanding the sentiments of different linguistic communities and come up with new and innovative solutions for their problems based on the analysis. List of languages our library provides support for are listed as follows:

Language Code Language Code
English en Hindi hi
Swedish sv Thai th
Dutch nl Japanese ja
Turkish tr Urdu ur
Indonesian id Portuguese pt
French fr Chinese zn-ch
Spanish es Persian fa
Romainain ro Russian ru

Features

  • Provides 16 labeled Datasets for different languages for analysis.
  • Implements Bert based architecture to identify languages.
  • Provides Functionalities to Extract,process and label tweets from twitter.
  • Provides a Random Forest classifier to implement sentiment analysis on any string.

Installation :

pip install --upgrade https://github.com/tusharsarkar3/TLA.git

Overview

Extract data
from TLA.Data.get_data import store_data
store_data('en',False)

This will extract and store the unlabeled data in a new directory inside data named datasets.

Label data
from TLA.Datasets.get_lang_data import language_data
df = language_data('en')
print(df)

This will print the labeled data that we have already collected.

Classify languages
Training

Training can be done in the following way:

from TLA.Lang_Classify.train import train_lang
train_lang(path_to_dataset,epochs)
Prediction

Inference is done in the following way:

from TLA.Lang_Classify.predict import predict
model = get_model(path_to_weights)
preds = predict(dataframe_to_be_used,model)
Analyse
Training

Training can be done in the following way:

from TLA.Analyse.train_rf import train_rf
train_rf(path_to_dataset)

This will store all the vectorizers and models in a seperate directory named saved_rf and saved_vec and they are present inside Analysis directory. Further instructions for training multiple languages is given in the next section which shows how to run the commands using CLI

Final Analysis

Analysis is done in the following way:

from TLA.Analysis.analyse import analyse_data 
analyse_data(path_to_weights)

This will store the final analysis as .csv inside a new directory named analysis.

Overview with Git

Installation another method
git clone https://github.com/tusharsarkar3/TLA.git
Extract data Navigate to the required directory
cd Data

Run the following command:

python get_data.py --lang en --process True

Lang flag is used to input the language of the dataset that is required and process flag shows where pre-processing should be done before returning the data. Give the following codes in the lang flag wrt the required language:

Loading Dataset

To load a dataset run the following command in python.

df= pd.read_csv("TLA/TLA/Datasets/get_data_en.csv")
 

The command will return a dataframe consisting of the data for the specific language requested.

In the phrase get_data_en, en can be sunstituted by the desired language code to load the dataframe for the specific language.

Pre-Processing

To preprocess a given string run the following command.

In your terminal use code

cd Data

then run the command in python

from TLA.Data import Pre_Process_Tweets

df=Pre_Process_Tweets.pre_process_tweet(df)

Here the function pre_process_tweet takes an input as a dataframe of tweets and returns an output of a dataframe with the list of preprocessed words for a particular tweet next to the tweet in the dataframe.

Analysis Training To train a random forest classifier for the purpose of sentiment analysis run the following command in your terminal.
cd Analysis

then

python train.rf --path "path to your datafile" --train_all_datasets False

here the --path flag represents the path to the required dataset you want to train the Random Forest Classifier on the --train_all_datasets flag is a boolean which can be used to train the model on multiple datasets at once.

The output is a file with the a .pkl file extention saved in the folder at location "TLA\Analysis\saved_rf{}.pkl" The output for vectorization of is stored in a .pkl file in the directory "TLA\Analysis\saved_vec{}.pkl"

Get Sentiment

To get the sentiment of any string use the following code.

In your terminal type

cd Analysis

then in your terminal type

python get_sentiment.py --prediction "Your string for prediction to be made upon" --lang "en"

here the --prediction flag collects the string for which you want to get the sentiment for. the --lang represents the language code representing the language you typed your string in.

The output is a sentiment which is either positive or negative depending on your string.

Statistics

To get a comprehensive statistic on sentiment of datasets run the following command.

In your terminal type

cd Analysis

then

python analyse.py 

This will give you an output of a table1.csv file at the location 'TLA\Analysis\analysis\table1.csv' comprising of statistics relating to the percentage of positive or negative tweets for a given language dataset.

It will also give a table2.csv file at 'TLA\Analysis\analysis\table2.csv' comprising of statistics for all languages combined.

Language Classification Training To train a model for language classfication on a given dataset run the following commands.

In your terminal run

cd Lang_Classify

then run

python train.py --data "path for your dataset" --model "path to weights if pretrained" --epochs 4

The --data flag requires the path to your training dataset.

The --model flag requires the path to the model you want to implement

The --epoch flag represents the epochs you want to train your model for.

The output is a file with a .pt extention named saved_wieghts_full.pt where your trained wieghst are stored.

Prediction To make prediction on any given string Us ethe following code.

In your terminal type

cd Lang_Classify

then run the code

python predict.py --predict "Text/DataFrame for language to predicted" --weights " Path for the stored weights of your model " 

The --predict flag requires the string you want to get the language for.

The --wieghts flag is the path for the stored wieghts you want to run your model on to make predictions.

The outputs is the language your string was typed in.


Results:

img

Performance of TLA ( Loss vs epochs)

Language Total tweets Positive Tweets Percentage Negative Tweets Percentage
English 500 66.8 33.2
Spanish 500 61.4 38.6
Persian 50 52 48
French 500 53 47
Hindi 500 62 38
Indonesian 500 63.4 36.6
Japanese 500 85.6 14.4
Dutch 500 84.2 15.8
Portuguese 500 61.2 38.8
Romainain 457 85.55 14.44
Russian 213 62.91 37.08
Swedish 420 80.23 19.76
Thai 424 71.46 28.53
Turkish 500 67.8 32.2
Urdu 42 69.04 30.95
Chinese 500 80.6 19.4

Reference:

@misc{sarkar2021tla,
     title={TLA: Twitter Linguistic Analysis}, 
     author={Tushar Sarkar and Nishant Rajadhyaksha},
     year={2021},
     eprint={2107.09710},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}
@misc{640cba8b-35cb-475e-ab04-62d079b74d13,
 title = {TLA: Twitter Linguistic Analysis},
 author = {Tushar Sarkar and Nishant Rajadhyaksha},
  journal = {Software Impacts},
 doi = {10.24433/CO.6464530.v1}, 
 howpublished = {\url{https://www.codeocean.com/}},
 year = 2021,
 month = {6},
 version = {v1}
}

Features to be added :

  • Access to more language
  • Creating GUI based system for better accesibility
  • Improving performance of the baseline model

Developed by Tushar Sarkar and Nishant Rajadhyaksha

Owner
Tushar Sarkar
I love solving problems with data
Tushar Sarkar
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
Submit issues and feature requests for our API here.

AIx GPT API Submit issues and feature requests for our API here. See https://apps.aixsolutionsgroup.com for more info. Python Quick Start pip install

AIx Solutions 7 Mar 27, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022