Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Overview

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation

This repo contains code of Simcal, which won the LVIS 2019 challenge. Note that it can achieve much higher tail class performance by simply change the calibration head from 2-layer fc with random initialization (2fc_rand) to 3-layer fc initialized from original model with standard training (3fc_ft), refer to paper for details. But we did not notice this during the challenge submission and used 2fc_rand, so much higher result of tail clasees on test set is expected with SimCal 3fc_ft.

License

This project is released under the Apache 2.0 license.

TODO

  • remove and clean redundant and commented codes
  • update script for installing with pytorch 1.1.0 to have faster calibration training
  • merge mask r-cnn and htc model test file, add htc calibration code, add Props-GT experiment code

Pull requests to improve the codebase or fix bugs are welcome

Installation

Simcal is based on mmdetection, Please refer to INSTALL.md for installation and dataset preparation.

Or run the following installation script:

#!/usr/bin/env bash
conda create -n simcal_mmdet python=3.7
source ~/anaconda3/etc/profile.d/conda.sh
conda init bash
conda activate simcal_mmdet
echo "python path"
which python
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
pip install cython==0.29.12 mmcv==0.2.16 matplotlib terminaltables
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install opencv-python-headless
pip install Pillow==6.1
pip install numpy==1.17.1 --no-deps
git clone https://github.com/twangnh/SimCal
cd SimCal
pip install -v -e .

To also get instance-centric AP results, please do not install official LVIS api or cocoapi with pip, as we have modified it with a local copy in the repository to additionally calculate instance centric bin AP results (i.e., AP1,AP2,AP3,AP4). We may create a pull request to update the official APIs for this purpose later.

Dataset preparation

For LVIS dataset, please arrange the data as:

SimCal
├── configs
├── data
│   ├── LVIS
│   │   ├── lvis_v0.5_train.json.zip
│   │   ├── lvis_v0.5_val.json.zip
│   │   ├── images
│   │   │   ├── train2017
│   │   │   ├── val2017

note for LVIS images, you can just create a softlink for the val2017 to point to COCO val2017

For COCO-LT (our sampled long-tail version of COCO, refer to paper for details), please download the sampled annotation file train_coco2017_LT_sampled.json and put it at data/coco/annotations/

Training (Calibration)

Calibration uses multi-gpu training to perform bi-level proposal sampling, to run calibration on a model, e.g.,

python tools/train.py configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py --use_model 3fc_ft --exp_prefix xxx --gpus 4/8

will use 3fc_ft head as described in the paper and save calibrated head ckpt with exp_prefix

Pre-trained models and calibrated heads

All the calibrated models reported in the paper are released for reproduction and future research:

Model Link
r50-ag epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50 epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50-ag-coco-lt epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
htc-x101 epoch-20 Googledrive
calhead-stege0 Googledrive
calhead-stege1 Googledrive
calhead-stege2 Googledrive

To evaluate and reproduce the paper result models, please first download the model checkpoints and arrange them as:

SimCal
├── configs
├── work_dirs
    |-- htc
    |   |-- 3fc_ft_stage0.pth
    |   |-- 3fc_ft_stage1.pth
    |   |-- 3fc_ft_stage2.pth
    |   `-- epoch_20.pth
    |-- mask_rcnn_r50_fpn_1x_cocolt_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    |-- mask_rcnn_r50_fpn_1x_lvis_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    `-- mask_rcnn_r50_fpn_1x_lvis_clswise
        |-- 3fc_ft_epoch.pth
        |-- 3fc_ft.pth
        `-- epoch_12.pth

Test with pretrained models and calibrated heads

mrcnn on lvis, paper result:

mrcnn on lvis paper result

Test LVIS r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.13286122428874017
bin 10_100 AP: 0.23243947868384135
bin 100_1000 AP: 0.20696891455408
bin 1000_* AP: 0.2615438157753328
bAP 0.20845335832549858
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.354
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.154
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.298
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.373
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.247
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.216
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.453

Test LVIS r50 model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_clswise.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.10187003036862649
bin 10_100 AP: 0.23907519508889202
bin 100_1000 AP: 0.22468457541750592
bin 1000_* AP: 0.28687985066050825
bAP 0.21312741288388318
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.375
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.245
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.167
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.405
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.164
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.399
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.481

mrcnn on cocolt, paper result:

mrcnn on lvis paper result

Test COCO-LT r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
bin ins nums: [4, 24, 32, 20]
bins ap: [0.1451797625472811, 0.1796142130031695, 0.27337165679657216, 0.3027201541441131]
eAP : 0.22522144662278398
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.412
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.257
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.133
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.334
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.239
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.424
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586

htc on lvis, paper result:

mrcnn on lvis paper result

Test HTC model (use --eval bbox for box result)

./tools/dist_test_htc.sh configs/simcal/calibration/htc_lvis_31d9.py 8 --out ./temp2.pkl --eval segm

bin 0_10 AP: 0.18796762487467375
bin 10_100 AP: 0.34907335159564473
bin 100_1000 AP: 0.3304618611020927
bin 1000_* AP: 0.3674197862439286
bAP 0.30873065595408494
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.334
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.490
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.357
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.422
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.565
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.337
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.364
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.506
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.631

note testing with LVIS can be significantly slower as max_det is 300 and det confidence threshold is 0.0

Props-GT experiment

By Props-GT experiment, we would like to emphasize that there is still large room of improvement along the direction of improving object proposal classification.

Balanced Group Softmax

We also encourage you to check our following up work Balanced Group Softmax after the LVIS challenge, (accepted by CVPR20 oral). It employs a more specific calibration approach with redesigned the softmax function, the calibration is more effective without dual-head inference, and only calibrates last layer of classification head. Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax

Citation

Please consider to cite our ECCV20 paper:

@article{wang2020devil,
  title={The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Junhao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:2007.11978},
  year={2020}
}

tech report for LVIS challenge 2019 at ICCV19 (Yu Li and Tao Wang have equal contribution for the LVIS challenge):

@article{wang2019classification,
  title={Classification Calibration for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Jun Hao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:1910.13081},
  year={2019}
}

Our following work Group Softmax at CVPR20 (oral):

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}
Owner
twang
make things work
twang
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022