Grammar Induction using a Template Tree Approach

Related tags

Deep Learninggitta
Overview

Gitta

Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on datasets that have latent templates, e.g. forum topics, writing prompts and output from template-based text generators. The found context-free grammars can easily be converted into grammars for use in grammar languages such as Tracery & Babbly.

Demo

A demo for Gitta can be found & executed on Google Colaboratory.

Example

dataset = [
    "I like cats and dogs",
    "I like bananas and geese",
    "I like geese and cats",
    "bananas are not supposed to be in a salad",
    "geese are not supposed to be in the zoo",
]
induced_grammar = grammar_induction.induce_grammar_using_template_trees(
    dataset,
    relative_similarity_threshold=0.1,
)
print(induced_grammar)
print(induced_grammar.generate_all())

Outputs as grammar:

{
    "origin": [
        "<B> are not supposed to be in <C>",
        "I like <B> and <B>"
    ],
    "B": [
        "bananas",
        "cats",
        "dogs",
        "geese"
    ],
    "C": [
        "a salad",
        "the zoo"
    ]
}

Which in turn generates all these texts:

{"dogs are not supposed to be in the zoo",
"cats are not supposed to be in a salad",
"I like geese and cats",
"cats are not supposed to be in the zoo", 
bananas are not supposed to be in a salad",
"I like dogs and dogs",
"bananas are not supposed to be in the zoo",
"I like dogs and bananas",
"geese are not supposed to be in the zoo",
"geese are not supposed to be in a salad",
"I like cats and dogs",
"I like dogs and geese",
"I like cats and bananas",
"I like bananas and dogs",
"I like bananas and bananas",
"I like cats and geese",
"I like geese and dogs",
"I like dogs and cats",
"I like geese and bananas",
"I like bananas and geese",
"dogs are not supposed to be in a salad",
"I like cats and cats",
"I like geese and geese",
"I like bananas and cats"}

Performance

We tested out this grammar induction algorithm on Twitterbots using the Tracery grammar modelling tool. Gitta only saw either 25, 50 or 100 example generations, and had to introduce a grammar that could generate similar texts. Every setting was run 5 times, and the median number of in-language texts (generations that were also produced by the original grammar) and not in-language texts (texts that the induced grammar generated, but not the original grammar). The median number of production rules is also included, to show its generalisation performance.

Grammar 25 examples 50 examples 100 examples
Name # generations size in lang not in lang size in lang not in lang size in lang not in lang size
botdoesnot 380292 363 648 0 64 2420 0 115 1596 4 179
BotSpill 43452 249 75 0 32 150 0 62 324 0 126
coldteabot 448 24 39 0 38 149 19 63 388 9 78
hometapingkills 4080 138 440 0 48 1184 3240 76 2536 7481 106
InstallingJava 390096 95 437 230 72 2019 1910 146 1156 3399 228
pumpkinspiceit 6781 6885 25 0 26 50 0 54 100 8 110
SkoolDetention 224 35 132 0 31 210 29 41 224 29 49
soundesignquery 15360 168 256 179 52 76 2 83 217 94 152
whatkilledme 4192 132 418 0 45 1178 0 74 2646 0 108
Whinge_Bot 450805 870 3092 6 80 16300 748 131 59210 1710 222

Credits & Paper citation

If you like this work, consider following me on Twitter. If use this work in an academic context, please consider citing the following paper:

@article{winters2020gitta,
    title={Discovering Textual Structures: Generative Grammar Induction using Template Trees},
    author={Winters, Thomas and De Raedt, Luc},
    journal={Proceedings of the 11th International Conference on Computational Creativity},
    pages = {177-180},
    year={2020},
    publisher={Association for Computational Creativity}
}

Or APA style:

Winters, T., & De Raedt, L. (2020). Discovering Textual Structures: Generative Grammar Induction using Template Trees. Proceedings of the 11th International Conference on Computational Creativity.
Owner
Thomas Winters
PhD Researcher in Creative Artificial Intelligence @ KU Leuven.
Thomas Winters
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT โ€” Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sรฉmery 2.7k Jan 01, 2023
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

๐Ÿจ Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. ๐Ÿš€ Features ๐Ÿ™… Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022