PAIRED in PyTorch 🔥

Related tags

Deep Learningpaired
Overview

License

PAIRED

This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduced in "Emergent Complexity and Zero-Shot Transfer via Unsupervised Environment Design" (Dennis et al, 2020). This implementation comes integrated with custom adversarial maze environments based on MiniGrid environment (Chevalier-Boisvert et al, 2018), as used in Dennis et al, 2020.

Unsupervised environment design (UED) methods propose a curriculum of tasks or environment instances (levels) that aims to foster more sample efficient learning and robust policies. PAIRED performs unsupervised environment design (UED) using a three-player game among two student agents—the protagonist and antagonist—and an adversary. The antagonist is allied with the adversary, which proposes new environment instances (or levels) aiming to maximize the regret of the protagonist, estimated as the difference in returns achieved by the student agents across a batch of rollouts on proposed levels.

PAIRED has a strong guarantee of robustness in that at Nash equilibrium, it provably induces a minimax regret policy for the protagonist, which means that the protagonist optimally trades off regret across all possible levels that can be proposed by the adversary.

UED algorithms included

  • PAIRED (Protagonist Antagonist Induced Regret Environment Design)
  • Minimax
  • Domain randomization

Set up

To install the necessary dependencies, run the following commands:

conda create --name paired python=3.8
conda activate paired
pip install -r requirements.txt

git clone https://github.com/openai/baselines.git
cd baselines
pip install -e .
cd ..

Configuration

Detailed descriptions of the various command-line arguments for the main training script, train.py can be found in arguments.py.

Experiments

MiniGrid benchmark results

For convenience, configuration json files are provided to generate the commands to run the specific experimental settings featured in Dennis et al, 2020. To generate the command to launch 1 run of the experiment codified by the configuration file config.json in the local folder train_scripts/configs, simply run the following, and copy and paste the output into your command line.

python train_scripts/make_cmd.py --json config --num_trials 1

Alternatively, you can run the following to copy the command directly to your clipboard:

python train_scripts/make_cmd.py --json config --num_trials 1 | pbcopy

By default, each experiment run will generate a folder in ~/logs/paired named after the --xpid argument passed into the the train command. This folder will contain log outputs in logs.csv and periodic screenshots of generated levels in the directory screenshots. Each screenshot uses the naming convention update_<number of PPO updates>.png. The latest model checkpoint will be output to model.tar, and archived model checkpoints are also saved according to the naming convention model_<number of PPO updates>.tar.

The json files for reproducing various MiniGrid experiments from Dennis et al, 2020 are listed below:

Method json config
PAIRED minigrid/paired.json
Minimax minigrid/minimax.json
DR minigrid/dr.json

Evaluation

You can use the following command to batch evaluate all trained models whose output directory shares the same <xpid_prefix> before the indexing _[0-9]+ suffix:

python -m eval \
--base_path "~/logs/paired" \
--prefix '<xpid prefix>' \
--num_processes 2 \
--env_names \
'MultiGrid-SixteenRooms-v0,MultiGrid-Labyrinth-v0,MultiGrid-Maze-v0'
--num_episodes 100 \
--model_tar model
Owner
UCL DARK Lab
UCL Deciding, Acting, and Reasoning with Knowledge (DARK) Lab
UCL DARK Lab
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022