traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Overview

traiNNer

Python Version License DeepSource Issues PR's Accepted

traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Here you will find: boilerplate code for training and testing computer vision (CV) models, different methods and strategies integrated in a single pipeline and modularity to add and remove components as needed, including new network architectures and templates for different training strategies. The code is under a constant state of change, so if you find an issue or bug please open a issue, a discussion or write in one of the Discord channels for help.

Different from other repositories, here the focus is not only on repeating previous papers' results, but to enable more people to train their own models more easily, using their own custom datasets, as well as integrating new ideas to increase the performance of the models. For these reasons, a lot of the code is made in order to automatically take care of fixing potential issues, whenever possible.

Details of the currently supported architectures can be found here.

For a changelog and general list of features of this repository, check here.

Table of Contents

  1. Dependencies
  2. Codes
  3. Usage
  4. Pretrained models
  5. Datasets
  6. How to help

Dependencies

  • Python 3 (Recommend to use Anaconda)
  • PyTorch >= 0.4.0. PyTorch >= 1.7.0 required to enable certain features (SWA, AMP, others), as well as torchvision.
  • NVIDIA GPU + CUDA
  • Python packages: pip install numpy opencv-python
  • JSON files can be used for the configuration option files, but in order to use YAML, the PyYAML python package is also a dependency: pip install PyYAML

Optional Dependencies

Codes

This repository is a full framework for training different kinds of networks, with multiple enhancements and options. In ./codes you will find a more detailed explaination of the code framework ).

You will also find:

  1. Some useful scripts. More details in ./codes/scripts.
  2. Evaluation codes, e.g., PSNR/SSIM metric.

Additionally, it is complemented by other repositories like DLIP, that can be used in order to extract estimated kernels and noise patches from real images, using a modified KernelGAN and patches extraction code. Detailed instructions about how to use the estimated kernels are available here

Usage

Training

Data and model preparation

In order to train your own models, you will need to create a dataset consisting of images, and prepare these images, both considering IO constrains, as well as the task the model should target. Detailed data preparation can be seen in codes/data.

Pretrained models that can be used for fine-tuning are available.

Detailed instructions on how to train are also available.

Augmentations strategies for training real-world models (blind SR) like Real-SR, BSRGAN and Real-ESRGAN are provided via presets that define the blur, resizing and noise configurations, but many more augmentations are available to define custom training strategies.

How to Test

For simple testing

The recommended way to get started with some of the models produced by the training codes available in this repository is by getting the pretrained models to be tested and run them in the companion repository iNNfer, with the purpose of model inference.

Additionally, you can also use a GUI (for ESRGAN models, for video) or a smaller repo for inference (for ESRGAN, for video).

If you are interested in obtaining results that can automatically return evaluation metrics, it is also possible to do inference of batches of images and some additional options with the instructions in how to test.

Pretrained models

The most recent community pretrained models can be found in the Wiki, Discord channels (game upscale and animation upscale) and nmkd's models.

For more details about the original and experimental pretrained models, please see pretrained models.

You can put the downloaded models in the default experiments/pretrained_models directory and use them in the options files with the corresponding network architectures.

Model interpolation

Models that were trained using the same pretrained model or are derivates of the same pretrained model are able to be interpolated to combine the properties of both. The original author demostrated this by interpolating the PSNR pretrained model (which is not perceptually good, but results in smooth images) with the ESRGAN resulting models that have more details but sometimes is excessive to control a balance in the resulting images, instead of interpolating the resulting images from both models, giving much better results.

The capabilities of linearly interpolating models are also explored in "DNI": Deep Network Interpolation for Continuous Imagery Effect Transition (CVPR19) with very interesting results and examples. The script for interpolation can be found in the net_interp.py file. This is an alternative to create new models without additional training and also to create pretrained models for easier fine tuning. Below is an example of interpolating between a PSNR-oriented and a perceptual ESRGAN model (first row), and examples of interpolating CycleGAN style transfer models.

More details and explanations of interpolation can be found here in the Wiki.

Datasets

Many datasets are publicly available and used to train models in a way that can be benchmarked and compared with other models. You are also able to create your own datasets with your own images.

Any dataset can be augmented to expose the model to information that might not be available in the images, such a noise and blur. For this reason, a data augmentation pipeline has been added to the options in this repository. It is also possible to add other types of augmentations, such as Batch Augmentations to apply them to minibatches instead of single images. Lastly, if your dataset is small, you can make use of Differential Augmentations to allow the discriminator to extract more information from the available images and train better models. More information can be found in the augmentations document.

How to help

There are multiple ways to help this project. The first one is by using it and trying to train your own models. You can open an issue if you find any bugs or start a discussion if you have ideas, questions or would like to showcase your results.

If you would like to contribute in the form of adding or fixing code, you can do so by cloning this repo and creating a PR. Ideally, it's better for PR to be precise and not changing many parts of the code at the same time, so it can be reviewed and tested. If possible, open an issue or discussion prior to creating the PR and we can talk about any ideas.

You can also join the discord servers and share results and questions with other users.

Lastly, after it has been suggested many times before, now there are options to donate to show your support to the project and help stir it in directions that will make it even more useful. Below you will find those options that were suggested.

Patreon

Bitcoin Address: 1JyWsAu7aVz5ZeQHsWCBmRuScjNhCEJuVL

Ethereum Address: 0xa26AAb3367D34457401Af3A5A0304d6CbE6529A2


Additional Help

If you have any questions, we have a couple of discord servers (game upscale and animation upscale) where you can ask them and a Wiki with more information.


Acknowledgement

Code architecture is originally inspired by pytorch-cyclegan and the first version of BasicSR.

Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022