PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

Related tags

Deep LearningSENTRY
Overview

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation

Viraj Prabhu, Shivam Khare, Deeksha Kartik, Judy Hoffman

Many existing approaches for unsupervised domain adaptation (UDA) focus on adapting under only data distribution shift and offer limited success under additional cross-domain label distribution shift. Recent work based on self-training using target pseudolabels has shown promise, but on challenging shifts pseudolabels may be highly unreliable and using them for self-training may cause error accumulation and domain misalignment. We propose Selective Entropy Optimization via Committee Consistency (SENTRY), a UDA algorithm that judges the reliability of a target instance based on its predictive consistency under a committee of random image transformations. Our algorithm then selectively minimizes predictive entropy to increase confidence on highly consistent target instances, while maximizing predictive entropy to reduce confidence on highly inconsistent ones. In combination with pseudolabel-based approximate target class balancing, our approach leads to significant improvements over the state-of-the-art on 27/31 domain shifts from standard UDA benchmarks as well as benchmarks designed to stress-test adaptation under label distribution shift.

method

Table of Contents

Setup and Dependencies

  1. Create an anaconda environment with Python 3.6: conda create -n sentry python=3.6.8 and activate: conda activate sentry
  2. Navigate to the code directory: cd code/
  3. Install dependencies: pip install -r requirements.txt

And you're all set up!

Usage

Download data

Data for SVHN->MNIST is downloaded automatically via PyTorch. Data for other benchmarks can be downloaded from the following links. The splits used for our experiments are already included in the data/ folder):

  1. DomainNet
  2. OfficeHome
  3. VisDA2017 (only train and validation needed)

Pretrained checkpoints

To reproduce numbers reported in the paper, we include a a few pretrained checkpoints. We include checkpoints (source and adapted) for SVHN to MNIST (DIGITS) in the checkpoints directory. Source and adapted checkpoints for Clipart to Sketch adaptation (from DomainNet) and Real_World to Product adaptation (from OfficeHome RS-UT) can be downloaded from this link, and should be saved to the checkpoints/source and checkpoints/SENTRY directory as appropriate.

Train and adapt model

  • Natural label distribution shift: Adapt a model from to for a given (where benchmark may be DomainNet, OfficeHome, VisDA, or DIGITS), as follows:
python train.py --id <experiment_id> \
                --source <source> \
                --target <target> \
                --img_dir <image_directory> \
                --LDS_type <LDS_type> \
                --load_from_cfg True \
                --cfg_file 'config/<benchmark>/<cfg_file>.yml' \
                --use_cuda True

SENTRY hyperparameters are provided via a sentry.yml config file in the corresponding config/<benchmark> folder (On DIGITS, we also provide a config for baseline adaptation via DANN). The list of valid source/target domains per-benchmark are:

  • DomainNet: real, clipart, sketch, painting
  • OfficeHome_RS_UT: Real_World, Clipart, Product
  • OfficeHome: Real_World, Clipart, Product, Art
  • VisDA2017: visda_train, visda_test
  • DIGITS: Only svhn (source) to mnist (target) adaptation is currently supported.

Pass in the path to the parent folder containing dataset images via the --img_dir <name_of_directory> flag (eg. --img_dir '~/data/DomainNet'). Pass in the label distribution shift type via the --LDS_type flag: For DomainNet, OfficeHome (standard), and VisDA2017, pass in --LDS_type 'natural' (default). For OfficeHome RS-UT, pass in --LDS_type 'RS_UT'. For DIGITS, pass in --LDS_type as one of IF1, IF20, IF50, or IF100, to load a manually long-tailed target training split with a given imbalance factor (IF), as described in Table 4 of the paper.

To load a pretrained DA checkpoint instead of training your own, additionally pass --load_da True and --id <benchmark_name> to the script above. Finally, the training script will log performance metrics to the console (average and aggregate accuracy), and additionally plot and save some per-class performance statistics to the results/ folder.

Note: By default this code runs on GPU. To run on CPU pass: --use_cuda False

Reference

If you found this code useful, please consider citing:

@article{prabhu2020sentry
   author = {Prabhu, Viraj and Khare, Shivam and Kartik, Deeksha and Hoffman, Judy},
   title = {SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation},
   year = {2020},
   journal = {arXiv preprint: 2012.11460},
}

Acknowledgements

We would like to thank the developers of PyTorch for building an excellent framework, in addition to the numerous contributors to all the open-source packages we use.

License

MIT

[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022