PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

Related tags

Deep LearningSENTRY
Overview

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation

Viraj Prabhu, Shivam Khare, Deeksha Kartik, Judy Hoffman

Many existing approaches for unsupervised domain adaptation (UDA) focus on adapting under only data distribution shift and offer limited success under additional cross-domain label distribution shift. Recent work based on self-training using target pseudolabels has shown promise, but on challenging shifts pseudolabels may be highly unreliable and using them for self-training may cause error accumulation and domain misalignment. We propose Selective Entropy Optimization via Committee Consistency (SENTRY), a UDA algorithm that judges the reliability of a target instance based on its predictive consistency under a committee of random image transformations. Our algorithm then selectively minimizes predictive entropy to increase confidence on highly consistent target instances, while maximizing predictive entropy to reduce confidence on highly inconsistent ones. In combination with pseudolabel-based approximate target class balancing, our approach leads to significant improvements over the state-of-the-art on 27/31 domain shifts from standard UDA benchmarks as well as benchmarks designed to stress-test adaptation under label distribution shift.

method

Table of Contents

Setup and Dependencies

  1. Create an anaconda environment with Python 3.6: conda create -n sentry python=3.6.8 and activate: conda activate sentry
  2. Navigate to the code directory: cd code/
  3. Install dependencies: pip install -r requirements.txt

And you're all set up!

Usage

Download data

Data for SVHN->MNIST is downloaded automatically via PyTorch. Data for other benchmarks can be downloaded from the following links. The splits used for our experiments are already included in the data/ folder):

  1. DomainNet
  2. OfficeHome
  3. VisDA2017 (only train and validation needed)

Pretrained checkpoints

To reproduce numbers reported in the paper, we include a a few pretrained checkpoints. We include checkpoints (source and adapted) for SVHN to MNIST (DIGITS) in the checkpoints directory. Source and adapted checkpoints for Clipart to Sketch adaptation (from DomainNet) and Real_World to Product adaptation (from OfficeHome RS-UT) can be downloaded from this link, and should be saved to the checkpoints/source and checkpoints/SENTRY directory as appropriate.

Train and adapt model

  • Natural label distribution shift: Adapt a model from to for a given (where benchmark may be DomainNet, OfficeHome, VisDA, or DIGITS), as follows:
python train.py --id <experiment_id> \
                --source <source> \
                --target <target> \
                --img_dir <image_directory> \
                --LDS_type <LDS_type> \
                --load_from_cfg True \
                --cfg_file 'config/<benchmark>/<cfg_file>.yml' \
                --use_cuda True

SENTRY hyperparameters are provided via a sentry.yml config file in the corresponding config/<benchmark> folder (On DIGITS, we also provide a config for baseline adaptation via DANN). The list of valid source/target domains per-benchmark are:

  • DomainNet: real, clipart, sketch, painting
  • OfficeHome_RS_UT: Real_World, Clipart, Product
  • OfficeHome: Real_World, Clipart, Product, Art
  • VisDA2017: visda_train, visda_test
  • DIGITS: Only svhn (source) to mnist (target) adaptation is currently supported.

Pass in the path to the parent folder containing dataset images via the --img_dir <name_of_directory> flag (eg. --img_dir '~/data/DomainNet'). Pass in the label distribution shift type via the --LDS_type flag: For DomainNet, OfficeHome (standard), and VisDA2017, pass in --LDS_type 'natural' (default). For OfficeHome RS-UT, pass in --LDS_type 'RS_UT'. For DIGITS, pass in --LDS_type as one of IF1, IF20, IF50, or IF100, to load a manually long-tailed target training split with a given imbalance factor (IF), as described in Table 4 of the paper.

To load a pretrained DA checkpoint instead of training your own, additionally pass --load_da True and --id <benchmark_name> to the script above. Finally, the training script will log performance metrics to the console (average and aggregate accuracy), and additionally plot and save some per-class performance statistics to the results/ folder.

Note: By default this code runs on GPU. To run on CPU pass: --use_cuda False

Reference

If you found this code useful, please consider citing:

@article{prabhu2020sentry
   author = {Prabhu, Viraj and Khare, Shivam and Kartik, Deeksha and Hoffman, Judy},
   title = {SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation},
   year = {2020},
   journal = {arXiv preprint: 2012.11460},
}

Acknowledgements

We would like to thank the developers of PyTorch for building an excellent framework, in addition to the numerous contributors to all the open-source packages we use.

License

MIT

FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021