Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

Overview

Net2Vis Teaser Net2Vis Teaser_Legend

Net2Vis

Automatic Network Visualization

Levels of Abstraction

Unified Design

Created by Alex Bäuerle, Christian van Onzenoodt and Timo Ropinski.

Accessible online.

What is this?

Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.

How does this help me?

When looking at publications that use neural networks for their techniques, it is still apparent how they differ. Most of them are handcrafted and thus lack a unified visual grammar. Handcrafting such visualizations also creates ambiguities and misinterpretations.

With Net2Vis, these problems are gone. It is designed to provide an abstract network visualization while still providing general information about individual layers. We reflect the number of features as well as the spatial resolution of the tensor in our glyph design. Layer-Types can be identified through colors. Since these networks can get fairly complex, we added the possibility to group layers and thus compact the network through replacing common layer sequences.

The best of it: Once the application runs, you just have to paste your Keras code into your browser and the visualization is automatically generated based on that. You still can tweak your visualizations and create abstractions before downloading them as SVG and PDF.

How can I use this?

Either, go to our Website, or install Net2Vis locally. Our website includes no setup, but might be slower and limited in network size depending on what you are working on. Installing this locally allows you to modify the functionality and might be better performing than the online version.

Installation

Starting with Net2Vis is pretty easy (assuming python3, tested to run on python 3.6-3.8, and npm).

  1. Clone this Repo
  2. For the Backend to work, we need Cairo and Docker installed on your machine. This is used for PDF conversion and running models pasted into the browser (more) secure.

For docker, the docker daemon needs to run. This way, we can run the pasted code within separate containers.

For starting up the backend, the following steps are needed:

  1. Go into the backend folder: cd backend
  2. Install backend dependencies by running pip3 install -r requirements.txt
  3. Install the docker container by running docker build --force-rm -t tf_plus_keras .
  4. To start the server, issue: python3 server.py

The frontend is a react application that can be started as follows:

  1. Go into the frontend folder: cd net2vis
  2. Install the javascript dependencies using: npm install
  3. Start the frontend application with: npm start

Model Presets

For local installations only: If you want to replicate any of the network figures in our paper, or just want to see examples for visualizations, we have included all network figures from our paper for you to experiment with. To access those simply use the following urls:

For most of these URL endings, you will probably also find networks in the official version, however, there is no guarantee that they wont have been changed.

Citation

If you find this code useful please consider citing us:

@article{bauerle2019net2vis,
  title={Net2Vis: Transforming Deep Convolutional Networks into Publication-Ready Visualizations},
  author={B{\"a}uerle, Alex and Ropinski, Timo},
  journal={arXiv preprint arXiv:1902.04394},
  year={2019}
}

Acknowlegements

This work was funded by the Carl-Zeiss-Scholarship for Ph.D. students.

Owner
Visual Computing Group (Ulm University)
Visual Computing Group (Ulm University)
Code for "High-Precision Model-Agnostic Explanations" paper

Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently “anchors”

Marco Tulio Correia Ribeiro 735 Jan 05, 2023
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Souvik Pratiher 16 Nov 17, 2021
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
Visual Computing Group (Ulm University) 99 Nov 30, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Jesse Vig 4.7k Jan 01, 2023
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
Python Library for Model Interpretation/Explanations

Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system

Oracle 1k Dec 27, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

56 Jan 03, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
Python implementation of R package breakDown

pyBreakDown Python implementation of breakDown package (https://github.com/pbiecek/breakDown). Docs: https://pybreakdown.readthedocs.io. Requirements

MI^2 DataLab 41 Mar 17, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Comprehensive collection of Pixel Attribution methods for Computer Vision.

Jacob Gildenblat 6.5k Jan 01, 2023
A library for debugging/inspecting machine learning classifiers and explaining their predictions

ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m

2.6k Dec 30, 2022
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Interpretability and explainability of data and machine learning models

AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase

1.2k Dec 29, 2022