Python script: Enphase Envoy mqtt json for Home Assistant

Overview

Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once per second with negligible load on the Envoy.

Requirements

  • An Enphase Envoy. Note - Tested with Envoy-S-Metered-EU
  • A system running python3 with the paho.mqtt python library
  • The normal way to install paho.mqtt is
    pip install paho-mqtt
  • If that doesn't work, try
git clone https://github.com/eclipse/paho.mqtt.python
cd paho.mqtt.python
python setup.py install
  • The serial number of your Envoy. Can be obtained by browsing to "http://envoy.local"
  • The installer password for your envoy. To obtain, run the passwordCalc.py script using the Envoys serial number after first editing the file and inserting your serial number. Don't change the userName - it must be installer
  • A mqtt broker - this can be external or use the Mosquitto broker from the Home Assistant Add-on store
    • If you use the add-on, create a Home Assistant user/password for mqtt as described in the Mosquitto broker installation instructions

Install

  • Copy to host
  • Configure settings in envoy_to_mqtt_json.py

Run Script

/path/to/python3 /path/to/envoy_to_mqtt_json.py

Run it as a daemon - an example for macOs is to create a ~/Library/LaunchAgents/envoy.plist

Disabled EnvironmentVariables PATH /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/usr/local/sbin KeepAlive Label envoy ProgramArguments /path/to/python3 /path/to/envoy_to_mqtt_json.py RunAtLoad ">



   

    
	
     
      Disabled
     
	
     
	
     
      EnvironmentVariables
     
	
     
		
      
       PATH
      
		
      
       /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/usr/local/sbin
      
	
     
	
     
      KeepAlive
     
	
     
	
     
      Label
     
	
     
      envoy
     
	
     
      ProgramArguments
     
	
     
		
      
       /path/to/python3
      
		
      
       /path/to/envoy_to_mqtt_json.py
      
	
     
	
     
      RunAtLoad
     
	
     

    

   

Then use launchctl to load the plist from a terminal:

launchctl load ~/Library/LaunchAgents/envoy.plist

To stop it running use

launchctl unload ~/Library/LaunchAgents/envoy.plist

Run as systemd service on Ubuntu

Take note of where your python file has been saved as you need to point to it in the service file

/path/to/envoy_to_mqtt_json.py

Using a bash terminal

cd /etc/systemd/system

Create a file with your favourite file editor called envoy.service and add the following

[Unit]
Description=Envoy stream to MQTT

[Service]
Type=simple
ExecStart=/path/to/envoy_to_mqtt_json.py
Restart=on-failure

[Install]
WantedBy=multi-user.target

Save and close the file then run the following commands

sudo systemctl daemon-reload
sudo systemctl enable envoy.service
sudo systemctl start envoy.service

You can check the status of the service at any time by the command

systemctl status envoy

Note: this should work for any linux distribution that uses systemd services, but the instructions and locations may vary slightly.

Example output

The resulting mqtt topic should look like this example:

{
    "production": {
        "ph-a": {
            "p": 351.13,
            "q": 317.292,
            "s": 487.004,
            "v": 244.566,
            "i": 1.989,
            "pf": 0.72,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    },
    "net-consumption": {
        "ph-a": {
            "p": 21.397,
            "q": -778.835,
            "s": 865.208,
            "v": 244.652,
            "i": 3.539,
            "pf": 0.03,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    },
    "total-consumption": {
        "ph-a": {
            "p": 372.528,
            "q": -1096.126,
            "s": 1352.165,
            "v": 244.609,
            "i": 5.528,
            "pf": 0.28,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    }
}
__Note__: Data is provided for three phases - unused phases have values of `0.0`

Description of labels

"production": = Solar panel production - always positive value
"total-consumption": = Total Power consumed - always positive value
"net-consumption": = Total power Consumed minus Solar panel production. Will be positive when importing and negative when exporting
    
    "ph-a" = Phase A    
    "ph-b" = Phase B
    "ph-c" = Phase C

        "p": =  Real Power ** This is the one to use
        "q": =  Reactive Power
        "s": =  Apparent Power
        "v": =  Voltage
        "i": =  Current
        "pf": = Power Factor
        "f": =  Frequency

value_template configuration examples

value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}' # Phase A Total power consumed by house
value_template: '{{ value_json["net-consumption"]["ph-c"]["p"] }}'   # Phase C - Total Power imported or exported
value_template: '{{ value_json["production"]["ph-b"]["v"] }}'   # Phase B - Voltage produced by panels

configuration.yaml configuration examples

# Example configuration.yaml entry
#
# Creates sensors with names such as sensor.mqtt_production
#
sensor:
  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_production"
    qos: 0
    unit_of_measurement: "W"
    value_template: '{% if is_state("sun.sun", "below_horizon")%}0{%else%}{{ value_json["production"]["ph-a"]["p"]  | int }}{%endif%}'
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}'
    name: "mqtt_consumption"
    qos: 0
    unit_of_measurement: "W"
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_power_factor"
    qos: 0
    unit_of_measurement: "%"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["pf"] }}'
    state_class: measurement
    device_class: power_factor

  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_voltage"
    qos: 0
    unit_of_measurement: "V"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["v"] }}'
    state_class: measurement
    device_class: voltage
#

Real time power display using Power Wheel Card

Here's the code if you'd like real-time visualisations of your power usage like this:

Power Wheel card:

active_arrow_color: '#FF0000'
color_icons: true
consuming_color: '#FF0000'
grid_power_consumption_entity: sensor.importing
grid_power_production_entity: sensor.exporting
home_icon: mdi:home-outline
icon_height: mdi:18px
producing_colour: '#00FF00'
solar_icon: mdi:solar-power
solar_power_entity: sensor.solarpower
title_power: ' '
type: custom:power-wheel-card

configuration.yaml:

sensor:
  
  #
  # These ones are for Envoy via mqtt
  #
  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_production"
    qos: 0
    unit_of_measurement: "W"
    value_template: '{% if is_state("sun.sun", "below_horizon")%}0{%else%}{{ value_json["production"]["ph-a"]["p"]  | int }}{%endif%}'
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}'
    name: "mqtt_consumption"
    qos: 0
    unit_of_measurement: "W"
    state_class: measurement
    device_class: power

  - platform: template
    sensors:
      exporting:
        friendly_name: "Current MQTT Energy Exporting"
        value_template: "{{ [0, (states('sensor.mqtt_production') | int - states('sensor.mqtt_consumption') | int)] | max }}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
      importing:
        friendly_name: "Current MQTT Energy Importing"
        value_template: "{{ [0, (states('sensor.mqtt_consumption') | int - states('sensor.mqtt_production') | int)] | max }}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
      solarpower:
        friendly_name: "Solar MQTT Power"
        value_template: "{{ states('sensor.mqtt_production')}}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
An open source operating system designed primarily for the Raspberry Pi Pico, written entirely in MicroPython

PycOS An open source operating system designed primarily for the Raspberry Pi Pico, written entirely in MicroPython. "PycOS" is an combination of the

8 Oct 06, 2022
KIRI - Keyboard Interception, Remapping, and Injection using Raspberry Pi as an HID Proxy.

KIRI - Keyboard Interception, Remapping and Injection using Raspberry Pi as a HID Proxy. Near limitless abilities for a keyboard warrior. Features Sim

Viggo Falster 10 Dec 23, 2022
Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;)

TMorse Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;) Compatible with python3.9+. No third-party library is required

Mahyar 2 Jul 11, 2022
Huawei Solar sensors for Home Assistant

Huawei Solar Sensors This integration splits out the various values that are fetched from your Huawei Solar inverter into separate HomeAssistant senso

Thijs Walcarius 151 Dec 31, 2022
A custom mechanical keyboard inspired by the CFTKB Mysterium

Env-KB A custom mechanical keyboard inspired by the CFTKB Mysterium Build Guide and Parts List What is to do? Right now for the first 5 PCBs I have, i

EnviousData 203 Jan 04, 2023
Scripts for measuring and displaying thermal behavior on Voron 3D printers

Thermal Profiling Measuring gantry deflection and frame expansion This script runs a series of defined homing and probing routines designed to charact

Jon Sanders 30 Nov 27, 2022
My 500 LED xmas tree

xmastree2020 This repository contains the code used for Matt's Christmas tree, as featured in "I wired my tree with 500 LED lights and calculated thei

Stand-up Maths 581 Jan 07, 2023
Smart Tech Automation Remote via Kinematics Gesture control for IoT devices

STARK Smart Tech Automation Remote via Kinematics Gesture control for IoT devices View Demo · Report Bug · Request Feature Table of Contents About The

Juseong (Joe) Kim 1 Jan 29, 2022
Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

System for Sorting and Recycling Containers - Project 3 Table of contents Overview The challenge Screenshot My process Built with Code snippets What I

Mit Patel 2 Dec 02, 2022
Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Hotplugger: Real USB Port Passthrough for VFIO/QEMU! Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (py

DARKGuy (Alemar) 66 Nov 24, 2022
My self-hosting infrastructure, fully automated from empty disk to operating services

Khue's Homelab Current status: ALPHA This project utilizes Infrastructure as Code to automate provisioning, operating, and updating self-hosted servic

Khue Doan 6.4k Dec 31, 2022
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
Control DJI Tello with Raspberry Pi and PS4 Controller

Control-DJI-Tello-with-Raspberry-Pi-and-PS4-Controller Demo of this project see

MohammadReza Sharifi 24 Aug 11, 2022
Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino Technical Answers to Real-World Problems Know the plant, Grow the plan

NelakurthiSudheer 3 Jan 03, 2022
A Fear and Greed index visualiser for Bitcoin on a SSD1351 OLED Screen

We're Doomed - A Bitcoin Fear and Greed index OLED visualiser Doom is a first-person-shooter from the 1990s. The health status monitor was one of the

VEEB 19 Dec 29, 2022
Component for deep integration LedFx from Home Assistant.

LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio

Dmitry Mamontov 28 Dec 13, 2022
raspberry pi servo control using pca9685

RPi_servo-control_pca9685 raspberry pi 180° servo control using pca9685 Requirements Requires you to have the adafruit servokit library installed You

1 Jan 10, 2022
Open-Source board for converting RaspberryPI to Brain-computer interface

The easiest way to the neuroscience world with the shield for RaspberryPi - PIEEG (website). Open-source. Crowdsupply This project is the result of se

Ildaron 436 Jan 01, 2023
Keystroke logging, often referred to as keylogging or keyboard capturing

Keystroke logging, often referred to as keylogging or keyboard capturing, is the action of recording the keys struck on a keyboard, typically covertly, so that a person using the keyboard is unaware

Bhumika R 2 Jan 11, 2022
Estimation of whether or not the persons given information will have diabetes.

Diabetes Business Problem : It is desired to develop a machine learning model that can predict whether people have diabetes when their characteristics

Barış TOKATLIOĞLU 0 Jan 20, 2022