TF Image Segmentation: Image Segmentation framework

Overview

TF Image Segmentation: Image Segmentation framework

The aim of the TF Image Segmentation framework is to provide/provide a simplified way for:

  • Converting some popular general/medical/other Image Segmentation Datasets into easy-to-use for training .tfrecords format with unified interface: different datasets but same way to store images and annotations.
  • Training routine with on-the-fly data augmentation (scaling, color distortion).
  • Training routine that is proved to work for particular model/dataset pair.
  • Evaluating Accuracy of trained models with common accuracy measures: Mean IOU, Mean pix. accuracy, Pixel accuracy.
  • Model files that were trained on a particular dataset with reported accuracy (models that were trained using TF with reported training routine and not models that were converted from Caffe or other framework)
  • Model definitions (like FCN-32s and others) that use weights initializations from Image Classification models like VGG that are officially provided by TF-Slim library.

So far, the framework contains an implementation of the FCN models (training and evaluation) in Tensorflow and TF-Slim library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, convert your dataset to tfrecords and follow the instructions below.

The end goal is to provide utilities to convert other datasets, report accuracies on them and provide models.

Installation

This code requires:

  1. Tensorflow r0.12 or later version.

  2. Custom tensorflow/models repository, which might be merged in a future.

Simply run:

git clone -b fully_conv_vgg https://github.com/warmspringwinds/models

And add models/slim subdirectory to your path:

import sys
# update with your path
sys.path.append('/home/dpakhom1/workspace/models/slim/')
  1. Some libraries which can be acquired by installing Anaconda package.

Or you can install scikit-image, matplotlib, numpy using pip.

  1. VGG 16 checkpoint file, which you can get from here.

  2. Clone this library:

git clone https://github.com/warmspringwinds/tf-image-segmentation

And add it to the path:

import sys
# update with your path
sys.path.append("/home/dpakhom1/tf_projects/segmentation/tf-image-segmentation/")

PASCAL VOC 2012

Implemented models were tested on Restricted PASCAL VOC 2012 Validation dataset (RV-VOC12) and trained on the PASCAL VOC 2012 Training data and additional Berkeley segmentation data for PASCAL VOC 12. It was important to test models on restricted Validation dataset to make sure no images in the validation dataset were seen by model during training.

The code to acquire the training and validating the model is also provided in the framework.

Fully Convolutional Networks for Semantic Segmentation (FCNs)

Here you can find models that were described in the paper "Fully Convolutional Networks for Semantic Segmentation" by Long et al. We trained and tested FCN-32s, FCN-16s and FCN-8s against PASCAL VOC 2012 dataset.

You can find all the scripts that were used for training and evaluation here.

This code has been used to train networks with this performance:

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Model Download Link
FCN-32s (ours) RV-VOC12 62.70 in prog. in prog. Dropbox
FCN-16s (ours) RV-VOC12 63.52 in prog. in prog. Dropbox
FCN-8s (ours) RV-VOC12 63.65 in prog. in prog. Dropbox
FCN-32s (orig.) RV-VOC11 59.40 73.30 89.10
FCN-16s (orig.) RV-VOC11 62.40 75.70 90.00
FCN-8s (orig.) RV-VOC11 62.70 75.90 90.30

About

If you used the code for your research, please, cite the paper:

@article{pakhomov2017deep,
  title={Deep Residual Learning for Instrument Segmentation in Robotic Surgery},
  author={Pakhomov, Daniil and Premachandran, Vittal and Allan, Max and Azizian, Mahdi and Navab, Nassir},
  journal={arXiv preprint arXiv:1703.08580},
  year={2017}
}

During implementation, some preliminary experiments and notes were reported:

Owner
Daniil Pakhomov
Phd student at JHU. Research interests: Image Classification, Image Segmentation, Face Detection and Face Recognition mostly based on Deep Learning.
Daniil Pakhomov
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022