Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

Related tags

Deep LearningFGR
Overview

FGR

This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(ICRA 2021)[arXiv]

Installation

Prerequisites

  • Python 3.6
  • scikit-learn, opencv-python, numpy, easydict, pyyaml
conda create -n FGR python=3.6
conda activate FGR
pip install -r requirements.txt

Usage

Data Preparation

Please download the KITTI 3D object detection dataset from here and organize them as follows:

${Root Path To Your KITTI Dataset}
├── data_object_image_2
│   ├── training
│   │   └── image_2
│   └── testing (optional)
│       └── image_2
│
├── data_object_label_2
│   └── training
│       └── label_2
│
├── data_object_calib
│   ├── training
│   │   └── calib
│   └── testing (optional)
│       └── calib
│
└── data_object_velodyne
    ├── training
    │   └── velodyne
    └── testing (optional)
        └── velodyne

Retrieving psuedo labels

Stage I: Coarse 3D Segmentation

In this stage, we get coarse 3D segmentation mask for each car. Please run the following command:

cd FGR
python save_region_grow_result.py --kitti_dataset_dir ${Path To Your KITTI Dataset} --output_dir ${Path To Save Region-Growth Result}
  • This Python file uses multiprocessing.Pool, which requires the number of parallel processes to execute. Default process is 8, so change this number by adding extra parameter "--process ${Process Number You Want}" in above command if needed.
  • The space of region-growth result takes about 170M, and the execution time is about 3 hours when using process=8 (default)

Stage II: 3D Bounding Box Estimation

In this stage, psuedo labels with KITTI format will be calculated and stored. Please run the following command:

cd FGR
python detect.py --kitti_dataset_dir ${Path To Your KITTI Dataset} --final_save_dir ${Path To Save Psuedo Labels} --pickle_save_path ${Path To Save Region-Growth Result}
  • The multiprocessing.Pool is also used, with default process 16. Change it by adding extra parameter "--process ${Process Number}" in above command if needed.
  • Add "--not_merge_valid_labels" to ignore validation labels. We only create psuedo labels in training dataset, for further testing deep models, we simply copy groundtruth validation labels to saved path. If you just want to preserve training psuedo, please add this parameter
  • Add "--save_det_image" if you want to visualize the estimated bbox (BEV). The visualization results will be saved in "final_save_dir/image".
  • One visualization sample is drawn in different colors:
    • white points indicate the coarse 3D segmentation of the car
    • cyan lines indicate left/right side of frustum
    • green point indicates the key vertex
    • yellow lines indicate GT bbox's 2D projection
    • purple box indicates initial estimated bounding box
    • red box indicates the intersection based on purple box, which is also the 2D projection of final estimated 3D bbox

We also provide final pusedo training labels and GT validation labels in ./FGR/detection_result.zip. You can directly use them to train the model.

Use psuedo labels to train 3D detectors

1. Getting Startted

Please refer to the OpenPCDet repo here and complete all the required installation.

After downloading the repo and completing all the installation, a small modification of original code is needed:

--------------------------------------------------
pcdet.datasets.kitti.kitti_dataset:
1. line between 142 and 143, add: "if len(obj_list) == 0: return None"
2. line after 191, delete "return list(infos)", and add:

final_result = list(infos)
while None in final_result:
    final_result.remove(None)
            
return final_result
--------------------------------------------------

This is because when creating dataset, OpenPCDet (the repo) requires each label file to have at least one valid label. In our psuedo labels, however, some bad labels will be removed and the label file may be empty.

2. Data Preparation

In this repo, the KITTI dataset storage is as follows:

data/kitti
├── testing
│   ├── calib
│   ├── image_2
│   └── velodyne
└── training
    ├── calib
    ├── image_2
    ├── label_2
    └── velodyne

It's different from our dataset storage, so we provide a script to construct this structure based on symlink:

sh create_kitti_dataset_new_format.sh ${Path To KITTI Dataset} ${Path To OpenPCDet Directory}

3. Start training

Please remove the symlink of 'training/label_2' temporarily, and add a new symlink to psuedo label path. Then follow the OpenPCDet instructions and train PointRCNN models.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{wei2021fgr,
  title={{FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection}},
  author={Wei, Yi and Su, Shang and Lu, Jiwen and Zhou, Jie},
  booktitle={ICRA},
  year={2021}
}
Owner
Yi Wei
Yi Wei
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022