EOD Historical Data Python Library (Unofficial)

Overview

EOD Historical Data Python Library (Unofficial)

https://eodhistoricaldata.com

Installation

python3 -m pip install eodhistoricaldata

Note

Demo API key below is provided by EOD Historial Data for testing purposes https://eodhistoricaldata.com/financial-apis/new-real-time-data-api-websockets

Usage

None: """Main""" websocket = WebSocketClient( # Demo API key for testing purposes api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"] ) websocket.start() message_count = 0 while True: if websocket: if ( message_count != websocket.message_count ): print(websocket.message) message_count = websocket.message_count sleep(0.25) # output every 1/4 second, websocket is realtime if __name__ == "__main__": main() ">
"""Sample script"""

from time import sleep
from eodhistoricaldata import WebSocketClient

def main() -> None:
    """Main"""

    websocket = WebSocketClient(
        # Demo API key for testing purposes
        api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"]
    )
    websocket.start()

    message_count = 0
    while True:
        if websocket:
            if (
                message_count != websocket.message_count
            ):
                print(websocket.message)
                message_count = websocket.message_count
                sleep(0.25)  # output every 1/4 second, websocket is realtime

if __name__ == "__main__":
    main()
You might also like...
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

 🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

A data parser for the internal syncing data format used by Fog of World.
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data structure.

Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter.
Comments
  • Syntax issue with query Parameter in get_calendar_ functions

    Syntax issue with query Parameter in get_calendar_ functions

    Hello,

    When using the get_calendar_XXX, functions we cannot use the query parameters defined by EOD as the word "from" is forbidden by Python, for instance : earning=client.get_calendar_earnings(from='2022-11-01', to='2022-11-30')

    will raise an issue.

    Should I pass the argument differently ?

    opened by ATCBGroup 1
  • dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    [email protected]:~/git/traderai/eod$ cat test.py
    from eodhd import APIClient
    api = APIClient("DEMO")
    
    [email protected]:~/git/traderai/eod$ python3 test.py
    Traceback (most recent call last):
      File "/home/mshamber/.local/lib/python3.8/site-packages/eodhd/eodhdgraphs.py", line 5, in <module>
        import matplotlib.pyplot as plt
    ModuleNotFoundError: No module named 'matplotlib'
    
    [email protected]:~/git/traderai/eod$ python3 -m pip install eodhd
    Requirement already satisfied: eodhd in /home/mshamber/.local/lib/python3.8/site-packages (1.0.8)
    Requirement already satisfied: websocket-client==1.3.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.3)
    Requirement already satisfied: rich==12.5.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (12.5.1)
    Requirement already satisfied: websockets==10.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (10.3)
    Requirement already satisfied: numpy==1.21.6 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.21.6)
    Requirement already satisfied: pandas==1.3.5 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.5)
    Requirement already satisfied: requests==2.28.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (2.28.1)
    Requirement already satisfied: commonmark<0.10.0,>=0.9.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (0.9.1)
    Requirement already satisfied: typing-extensions<5.0,>=4.0.0; python_version < "3.9" in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (4.3.0)
    Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (2.13.0)
    Requirement already satisfied: python-dateutil>=2.7.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2.8.2)
    Requirement already satisfied: pytz>=2017.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2022.5)
    Requirement already satisfied: charset-normalizer<3,>=2 in /home/mshamber/.local/lib/python3.8/site-packages (from requests==2.28.1->eodhd) (2.1.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2.8)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2019.11.28)
    Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (1.25.8)
    Requirement already satisfied: six>=1.5 in /home/mshamber/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas==1.3.5->eodhd) (1.16.0)
    
    opened by opme 1
Releases(1.0.8)
Owner
Michael Whittle
Solution Architect
Michael Whittle
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data.

MetPy MetPy is a collection of tools in Python for reading, visualizing and performing calculations with weather data. MetPy follows semantic versioni

Unidata 971 Dec 25, 2022
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
Data science/Analysis Health Care Portfolio

Health-Care-DS-Projects Data Science/Analysis Health Care Portfolio Consists Of 3 Projects: Mexico Covid-19 project, analyze the patient medical histo

Mohamed Abd El-Mohsen 1 Feb 13, 2022
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022