Parameterized testing with any Python test framework

Related tags

Testingparameterized
Overview

Parameterized testing with any Python test framework

PyPI PyPI - Downloads Circle CI

Parameterized testing in Python sucks.

parameterized fixes that. For everything. Parameterized testing for nose, parameterized testing for py.test, parameterized testing for unittest.

# test_math.py
from nose.tools import assert_equal
from parameterized import parameterized, parameterized_class

import unittest
import math

@parameterized([
    (2, 2, 4),
    (2, 3, 8),
    (1, 9, 1),
    (0, 9, 0),
])
def test_pow(base, exponent, expected):
   assert_equal(math.pow(base, exponent), expected)

class TestMathUnitTest(unittest.TestCase):
   @parameterized.expand([
       ("negative", -1.5, -2.0),
       ("integer", 1, 1.0),
       ("large fraction", 1.6, 1),
   ])
   def test_floor(self, name, input, expected):
       assert_equal(math.floor(input), expected)

@parameterized_class(('a', 'b', 'expected_sum', 'expected_product'), [
   (1, 2, 3, 2),
   (5, 5, 10, 25),
])
class TestMathClass(unittest.TestCase):
   def test_add(self):
      assert_equal(self.a + self.b, self.expected_sum)

   def test_multiply(self):
      assert_equal(self.a * self.b, self.expected_product)

@parameterized_class([
   { "a": 3, "expected": 2 },
   { "b": 5, "expected": -4 },
])
class TestMathClassDict(unittest.TestCase):
   a = 1
   b = 1

   def test_subtract(self):
      assert_equal(self.a - self.b, self.expected)

With nose (and nose2):

$ nosetests -v test_math.py
test_floor_0_negative (test_math.TestMathUnitTest) ... ok
test_floor_1_integer (test_math.TestMathUnitTest) ... ok
test_floor_2_large_fraction (test_math.TestMathUnitTest) ... ok
test_math.test_pow(2, 2, 4, {}) ... ok
test_math.test_pow(2, 3, 8, {}) ... ok
test_math.test_pow(1, 9, 1, {}) ... ok
test_math.test_pow(0, 9, 0, {}) ... ok
test_add (test_math.TestMathClass_0) ... ok
test_multiply (test_math.TestMathClass_0) ... ok
test_add (test_math.TestMathClass_1) ... ok
test_multiply (test_math.TestMathClass_1) ... ok
test_subtract (test_math.TestMathClassDict_0) ... ok

----------------------------------------------------------------------
Ran 12 tests in 0.015s

OK

As the package name suggests, nose is best supported and will be used for all further examples.

With py.test (version 2.0 and above):

$ py.test -v test_math.py
============================= test session starts ==============================
platform darwin -- Python 3.6.1, pytest-3.1.3, py-1.4.34, pluggy-0.4.0
collecting ... collected 13 items

test_math.py::test_pow::[0] PASSED
test_math.py::test_pow::[1] PASSED
test_math.py::test_pow::[2] PASSED
test_math.py::test_pow::[3] PASSED
test_math.py::TestMathUnitTest::test_floor_0_negative PASSED
test_math.py::TestMathUnitTest::test_floor_1_integer PASSED
test_math.py::TestMathUnitTest::test_floor_2_large_fraction PASSED
test_math.py::TestMathClass_0::test_add PASSED
test_math.py::TestMathClass_0::test_multiply PASSED
test_math.py::TestMathClass_1::test_add PASSED
test_math.py::TestMathClass_1::test_multiply PASSED
test_math.py::TestMathClassDict_0::test_subtract PASSED
==================== 12 passed, 4 warnings in 0.16 seconds =====================

With unittest (and unittest2):

$ python -m unittest -v test_math
test_floor_0_negative (test_math.TestMathUnitTest) ... ok
test_floor_1_integer (test_math.TestMathUnitTest) ... ok
test_floor_2_large_fraction (test_math.TestMathUnitTest) ... ok
test_add (test_math.TestMathClass_0) ... ok
test_multiply (test_math.TestMathClass_0) ... ok
test_add (test_math.TestMathClass_1) ... ok
test_multiply (test_math.TestMathClass_1) ... ok
test_subtract (test_math.TestMathClassDict_0) ... ok

----------------------------------------------------------------------
Ran 8 tests in 0.001s

OK

(note: because unittest does not support test decorators, only tests created with @parameterized.expand will be executed)

With green:

$ green test_math.py -vvv
test_math
  TestMathClass_1
.   test_method_a
.   test_method_b
  TestMathClass_2
.   test_method_a
.   test_method_b
  TestMathClass_3
.   test_method_a
.   test_method_b
  TestMathUnitTest
.   test_floor_0_negative
.   test_floor_1_integer
.   test_floor_2_large_fraction
  TestMathClass_0
.   test_add
.   test_multiply
  TestMathClass_1
.   test_add
.   test_multiply
  TestMathClassDict_0
.   test_subtract

Ran 12 tests in 0.121s

OK (passes=9)

Installation

$ pip install parameterized

Compatibility

Yes (mostly).

  Py2.6 Py2.7 Py3.4 Py3.5 Py3.6 Py3.7 Py3.8 Py3.9 PyPy @mock.patch
nose yes yes yes yes yes yes yes yes yes yes
nose2 yes yes yes yes yes yes yes yes yes yes
py.test 2 yes yes no* no* no* no* yes yes yes yes
py.test 3 yes yes yes yes yes yes yes yes yes yes
py.test 4 no** no** no** no** no** no** no** no** no** no**
py.test fixtures no† no† no† no† no† no† no† no† no† no†
unittest
(@parameterized.expand)
yes yes yes yes yes yes yes yes yes yes
unittest2
(@parameterized.expand)
yes yes yes yes yes yes yes yes yes yes

*: py.test 2 does does not appear to work (#71) under Python 3. Please comment on the related issues if you are affected.

**: py.test 4 is not yet supported (but coming!) in issue #34

†: py.test fixture support is documented in issue #81

Dependencies

(this section left intentionally blank)

Exhaustive Usage Examples

The @parameterized and @parameterized.expand decorators accept a list or iterable of tuples or param(...), or a callable which returns a list or iterable:

from parameterized import parameterized, param

# A list of tuples
@parameterized([
    (2, 3, 5),
    (3, 5, 8),
])
def test_add(a, b, expected):
    assert_equal(a + b, expected)

# A list of params
@parameterized([
    param("10", 10),
    param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
    assert_equal(int(str_val, base=base), expected)

# An iterable of params
@parameterized(
    param.explicit(*json.loads(line))
    for line in open("testcases.jsons")
)
def test_from_json_file(...):
    ...

# A callable which returns a list of tuples
def load_test_cases():
    return [
        ("test1", ),
        ("test2", ),
    ]
@parameterized(load_test_cases)
def test_from_function(name):
    ...

Note that, when using an iterator or a generator, all the items will be loaded into memory before the start of the test run (we do this explicitly to ensure that generators are exhausted exactly once in multi-process or multi-threaded testing environments).

The @parameterized decorator can be used test class methods, and standalone functions:

from parameterized import parameterized

class AddTest(object):
    @parameterized([
        (2, 3, 5),
    ])
    def test_add(self, a, b, expected):
        assert_equal(a + b, expected)

@parameterized([
    (2, 3, 5),
])
def test_add(a, b, expected):
    assert_equal(a + b, expected)

And @parameterized.expand can be used to generate test methods in situations where test generators cannot be used (for example, when the test class is a subclass of unittest.TestCase):

import unittest
from parameterized import parameterized

class AddTestCase(unittest.TestCase):
    @parameterized.expand([
        ("2 and 3", 2, 3, 5),
        ("3 and 5", 2, 3, 5),
    ])
    def test_add(self, _, a, b, expected):
        assert_equal(a + b, expected)

Will create the test cases:

$ nosetests example.py
test_add_0_2_and_3 (example.AddTestCase) ... ok
test_add_1_3_and_5 (example.AddTestCase) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

Note that @parameterized.expand works by creating new methods on the test class. If the first parameter is a string, that string will be added to the end of the method name. For example, the test case above will generate the methods test_add_0_2_and_3 and test_add_1_3_and_5.

The names of the test cases generated by @parameterized.expand can be customized using the name_func keyword argument. The value should be a function which accepts three arguments: testcase_func, param_num, and params, and it should return the name of the test case. testcase_func will be the function to be tested, param_num will be the index of the test case parameters in the list of parameters, and param (an instance of param) will be the parameters which will be used.

import unittest
from parameterized import parameterized

def custom_name_func(testcase_func, param_num, param):
    return "%s_%s" %(
        testcase_func.__name__,
        parameterized.to_safe_name("_".join(str(x) for x in param.args)),
    )

class AddTestCase(unittest.TestCase):
    @parameterized.expand([
        (2, 3, 5),
        (2, 3, 5),
    ], name_func=custom_name_func)
    def test_add(self, a, b, expected):
        assert_equal(a + b, expected)

Will create the test cases:

$ nosetests example.py
test_add_1_2_3 (example.AddTestCase) ... ok
test_add_2_3_5 (example.AddTestCase) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK

The param(...) helper class stores the parameters for one specific test case. It can be used to pass keyword arguments to test cases:

from parameterized import parameterized, param

@parameterized([
    param("10", 10),
    param("10", 16, base=16),
])
def test_int(str_val, expected, base=10):
    assert_equal(int(str_val, base=base), expected)

If test cases have a docstring, the parameters for that test case will be appended to the first line of the docstring. This behavior can be controlled with the doc_func argument:

from parameterized import parameterized

@parameterized([
    (1, 2, 3),
    (4, 5, 9),
])
def test_add(a, b, expected):
    """ Test addition. """
    assert_equal(a + b, expected)

def my_doc_func(func, num, param):
    return "%s: %s with %s" %(num, func.__name__, param)

@parameterized([
    (5, 4, 1),
    (9, 6, 3),
], doc_func=my_doc_func)
def test_subtraction(a, b, expected):
    assert_equal(a - b, expected)
$ nosetests example.py
Test addition. [with a=1, b=2, expected=3] ... ok
Test addition. [with a=4, b=5, expected=9] ... ok
0: test_subtraction with param(*(5, 4, 1)) ... ok
1: test_subtraction with param(*(9, 6, 3)) ... ok

----------------------------------------------------------------------
Ran 4 tests in 0.001s

OK

Finally @parameterized_class parameterizes an entire class, using either a list of attributes, or a list of dicts that will be applied to the class:

from yourapp.models import User
from parameterized import parameterized_class

@parameterized_class([
   { "username": "user_1", "access_level": 1 },
   { "username": "user_2", "access_level": 2, "expected_status_code": 404 },
])
class TestUserAccessLevel(TestCase):
   expected_status_code = 200

   def setUp(self):
      self.client.force_login(User.objects.get(username=self.username)[0])

   def test_url_a(self):
      response = self.client.get('/url')
      self.assertEqual(response.status_code, self.expected_status_code)

   def tearDown(self):
      self.client.logout()


@parameterized_class(("username", "access_level", "expected_status_code"), [
   ("user_1", 1, 200),
   ("user_2", 2, 404)
])
class TestUserAccessLevel(TestCase):
   def setUp(self):
      self.client.force_login(User.objects.get(username=self.username)[0])

   def test_url_a(self):
      response = self.client.get("/url")
      self.assertEqual(response.status_code, self.expected_status_code)

   def tearDown(self):
      self.client.logout()

The @parameterized_class decorator accepts a class_name_func argument, which controls the name of the parameterized classes generated by @parameterized_class:

from parameterized import parameterized, parameterized_class

def get_class_name(cls, num, params_dict):
    # By default the generated class named includes either the "name"
    # parameter (if present), or the first string value. This example shows
    # multiple parameters being included in the generated class name:
    return "%s_%s_%s%s" %(
        cls.__name__,
        num,
        parameterized.to_safe_name(params_dict['a']),
        parameterized.to_safe_name(params_dict['b']),
    )

@parameterized_class([
   { "a": "hello", "b": " world!", "expected": "hello world!" },
   { "a": "say ", "b": " cheese :)", "expected": "say cheese :)" },
], class_name_func=get_class_name)
class TestConcatenation(TestCase):
  def test_concat(self):
      self.assertEqual(self.a + self.b, self.expected)
$ nosetests -v test_math.py
test_concat (test_concat.TestConcatenation_0_hello_world_) ... ok
test_concat (test_concat.TestConcatenation_0_say_cheese__) ... ok

Using with Single Parameters

If a test function only accepts one parameter and the value is not iterable, then it is possible to supply a list of values without wrapping each one in a tuple:

@parameterized([1, 2, 3])
def test_greater_than_zero(value):
   assert value > 0

Note, however, that if the single parameter is iterable (such as a list or tuple), then it must be wrapped in a tuple, list, or the param(...) helper:

@parameterized([
   ([1, 2, 3], ),
   ([3, 3], ),
   ([6], ),
])
def test_sums_to_6(numbers):
   assert sum(numbers) == 6

(note, also, that Python requires single element tuples to be defined with a trailing comma: (foo, ))

Using with @mock.patch

parameterized can be used with mock.patch, but the argument ordering can be confusing. The @mock.patch(...) decorator must come below the @parameterized(...), and the mocked parameters must come last:

@mock.patch("os.getpid")
class TestOS(object):
   @parameterized(...)
   @mock.patch("os.fdopen")
   @mock.patch("os.umask")
   def test_method(self, param1, param2, ..., mock_umask, mock_fdopen, mock_getpid):
      ...

Note: the same holds true when using @parameterized.expand.

Migrating from nose-parameterized to parameterized

To migrate a codebase from nose-parameterized to parameterized:

  1. Update your requirements file, replacing nose-parameterized with parameterized.

  2. Replace all references to nose_parameterized with parameterized:

    $ perl -pi -e 's/nose_parameterized/parameterized/g' your-codebase/
    
  3. You're done!

FAQ

What happened to nose-parameterized?
Originally only nose was supported. But now everything is supported, and it only made sense to change the name!
What do you mean when you say "nose is best supported"?
There are small caveates with py.test and unittest: py.test does not show the parameter values (ex, it will show test_add[0] instead of test_add[1, 2, 3]), and unittest/unittest2 do not support test generators so @parameterized.expand must be used.
Why not use @pytest.mark.parametrize?
Because spelling is difficult. Also, parameterized doesn't require you to repeat argument names, and (using param) it supports optional keyword arguments.
Why do I get an AttributeError: 'function' object has no attribute 'expand' with @parameterized.expand?
You've likely installed the parametrized (note the missing e) package. Use parameterized (with the e) instead and you'll be all set.
Owner
David Wolever
David Wolever
FakeDataGen is a Full Valid Fake Data Generator.

FakeDataGen is a Full Valid Fake Data Generator. This tool helps you to create fake accounts (in Spanish format) with fully valid data. Within this in

Joel GM 64 Dec 12, 2022
Python Testing Crawler 🐍 🩺 🕷️ A crawler for automated functional testing of a web application

Python Testing Crawler 🐍 🩺 🕷️ A crawler for automated functional testing of a web application Crawling a server-side-rendered web application is a

70 Aug 07, 2022
A small faсade for the standard python mocker library to make it user-friendly

unittest-mocker Inspired by the pytest-mock, but written from scratch for using with unittest and convenient tool - patch_class Installation pip insta

Vertliba V.V. 6 Jun 10, 2022
automate the procedure of 403 response code bypass

403bypasser automate the procedure of 403 response code bypass Description i notice a lot of #bugbountytips describe how to bypass 403 response code s

smackerdodi2 40 Dec 16, 2022
Wraps any WSGI application and makes it easy to send test requests to that application, without starting up an HTTP server.

WebTest This wraps any WSGI application and makes it easy to send test requests to that application, without starting up an HTTP server. This provides

Pylons Project 325 Dec 30, 2022
Automated mouse clicker script using PyAutoGUI and Typer.

clickpy Automated mouse clicker script using PyAutoGUI and Typer. This app will randomly click your mouse between 1 second and 3 minutes, to prevent y

Joe Fitzgibbons 0 Dec 01, 2021
A wrapper for webdriver that is a jumping off point for web automation.

Webdriver Automation Plus ===================================== Description: Tests the user can save messages then find them in search and Saved items

1 Nov 08, 2021
UX Analytics & A/B Testing

UX Analytics & A/B Testing

Marvin EDORH 1 Sep 07, 2021
Instagram unfollowing bot. If this script is executed that specific accounts following will be reduced

Instagram-Unfollower-Bot Instagram unfollowing bot. If this script is executed that specific accounts following will be reduced.

Biswarup Bhattacharjee 1 Dec 24, 2021
pywinauto is a set of python modules to automate the Microsoft Windows GUI

pywinauto is a set of python modules to automate the Microsoft Windows GUI. At its simplest it allows you to send mouse and keyboard actions to windows dialogs and controls, but it has support for mo

3.8k Jan 06, 2023
This is a web test framework based on python+selenium

Basic thoughts for this framework There should have a BasePage.py to be the parent page and all the page object should inherit this class BasePage.py

Cactus 2 Mar 09, 2022
Voip Open Linear Testing Suite

VOLTS Voip Open Linear Tester Suite Functional tests for VoIP systems based on voip_patrol and docker 10'000 ft. view System is designed to run simple

Igor Olhovskiy 17 Dec 30, 2022
pytest plugin to test mypy static type analysis

pytest-mypy-testing — Plugin to test mypy output with pytest pytest-mypy-testing provides a pytest plugin to test that mypy produces a given output. A

David Fritzsche 21 Dec 21, 2022
Automated tests for OKAY websites in Python (Selenium) - user friendly version

Okay Selenium Testy Aplikace určená k testování produkčních webů společnosti OKAY s.r.o. Závislosti K běhu aplikace je potřeba mít v počítači nainstal

Viktor Bem 0 Oct 01, 2022
create custom test databases that are populated with fake data

About Generate fake but valid data filled databases for test purposes using most popular patterns(AFAIK). Current support is sqlite, mysql, postgresql

Emir Ozer 2.2k Jan 04, 2023
Code coverage measurement for Python

Coverage.py Code coverage testing for Python. Coverage.py measures code coverage, typically during test execution. It uses the code analysis tools and

Ned Batchelder 2.3k Jan 04, 2023
An AWS Pentesting tool that lets you use one-liner commands to backdoor an AWS account's resources with a rogue AWS account - or share the resources with the entire internet 😈

An AWS Pentesting tool that lets you use one-liner commands to backdoor an AWS account's resources with a rogue AWS account - or share the resources with the entire internet 😈

Brandon Galbraith 276 Mar 03, 2021
Python script to automatically download from Zippyshare

Zippyshare downloader and Links Extractor Python script to automatically download from Zippyshare using Selenium package and Internet Download Manager

Daksh Khurana 2 Oct 31, 2022
MultiPy lets you conveniently keep track of your python scripts for personal use or showcase by loading and grouping them into categories. It allows you to either run each script individually or together with just one click.

MultiPy About MultiPy is a graphical user interface built using Dear PyGui Python GUI Framework that lets you conveniently keep track of your python s

56 Oct 29, 2022
This repository contains a set of benchmarks of different implementations of Parquet (storage format) <-> Arrow (in-memory format).

Parquet benchmarks This repository contains a set of benchmarks of different implementations of Parquet (storage format) - Arrow (in-memory format).

11 Dec 21, 2022