Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Related tags

Deep Learningmtl-ssl
Overview

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019)

To make better use of given limited labels, we propose a novel object detection approach that takes advantage of both multi-task learning (MTL) and self-supervised learning (SSL). We propose a set of auxiliary tasks that help improve the accuracy of object detection.

Here is a guide to the source code.

Reference

If you are willing to use this code or cite the paper, please refer the following:

@inproceedings{lee2019multi,
 author = {Wonhee Lee and Joonil Na and Gunhee Kim},
 title = {Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
 year = {2019}
}

CVPR Poster [PPT][PDF]

Introduction [PPT][PDF]

Multi-task Learning

Multi-task learning (MTL) aims at jointly training multiple relevant tasks with less annotations to improve the performance of each task.

[1] An Overview of Multi-Task Learning in Deep Neural Networks

[2] Mask R-CNN

Self-supervised Learning

Self-supervised learning (SSL) aims at training the model from the annotations generated by itself with no additional human effort.

[3] Learning Representations for Automatic Colorization

[4] Unsupervised learning of visual representations by solving jigsaw puzzles

Annotation Reuse

Reusing labels of one task is not only helpful to create new tasks and their labels but also capable of improving the performance of the main task through pretraining. Our work focuses on recycling bounding box labels for object detection.

[5] Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

[6] Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

Our approach

The key to our approach is to propose a set of auxiliary tasks that are relevant but not identical to object detection. They create their own labels by recycling the bounding box labels (e.g. annotations of the main task) in an SSL manner while regarding the bounding box as metadata. Then these auxiliary tasks are jointly trained with the object detection model in an MTL way.

Approach

Overall architecture

It shows how the object detector (i.e. main task model) such as Faster R-CNN makes a prediction for a given proposal box (red) with assistance of three auxiliary tasks at inference. The auxiliary task models (shown in the bottom right) are almost identical to the main task predictor except no box regressor. The refinement of detection prediction (shown in right) is also collectively done by cooperation of the main and auxiliary task models. K is the number of categories.

3 auxiliary tasks

This is an example of how to generate labels of auxiliary tasks via recycling of GT bounding boxes.

  • The multi-object soft label assigns the area portions occupied by each class’s GT boxes within a window.
  • The closeness label scores the distances from the center of the GT box to those of other GT boxes.
  • The foreground label is a binary mask between foreground and background.

Results

We empirically validate that our approach effectively improves detection performance on various architectures and datasets. We test two state-of-the-art region proposal object detectors, including Faster R-CNN and R-FCN, with three CNN backbones of ResNet-101, InceptionResNet-v2, and MobileNet on two benchmark datasets of PASCAL VOC and COCO.

Qualitative results

Qualitative comparison of detection results between baseline (left) and our approach (right) in each set. We divide the errors into five categories (Localization, Classification, Redundancy, Background, False Negative). Our approach often improves the baseline’s detection by correcting several false negatives and false positives such as background, similar object and redundant detection.

Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022