Deep Learning as a Cloud API Service.

Overview

Deep API

Deep Learning as Cloud APIs.

This project provides pre-trained deep learning models as a cloud API service. A web interface is available as well.

Quick Start

Python 3:

$ pip3 install -r requirements.txt
$ python main.py

Anaconda:

$ conda env create -f environment.yml
$ conda activate cloudapi
$ python main.py

Using Docker:

docker run -p 8080:8080 wuhanstudio/deep-api

Navigate to https://localhost:8080

API Client

It's possible to get predictions by sending a POST request to http://127.0.0.1:8080/vgg16_cifar10.

Using curl:

```
export IMAGE_FILE=test/cat.jpg
(echo -n '{"file": "'; base64 $IMAGE_FILE; echo '"}') | \
curl -H "Content-Type: application/json" \
     -d @- http://127.0.0.1:8080/vgg16_cifar10
```

Using Python:

def classification(url, file):
    # Load the input image and construct the payload for the request
    image = Image.open(file)
    buff = BytesIO()
    image.save(buff, format="JPEG")

    data = {'file': base64.b64encode(buff.getvalue()).decode("utf-8")}
    return requests.post(url, json=data).json()

res = classification('http://127.0.0.1:8080/vgg', 'cat.jpg')

This python script is available in the test folder. You should see prediction results by running python3 minimal.py:

cat            0.99804
deer           0.00156
truck          0.00012
airplane       0.00010
dog            0.00009
bird           0.00005
ship           0.00003
frog           0.00001
horse          0.00001
automobile     0.00001

Concurrent clients

Sending 5 concurrent requests to the api server:

$ python3 multi-client.py --num_workers 5 cat.jpg

You should see the result:

----- start -----
Sending requests
Sending requests
Sending requests
Sending requests
Sending requests
------ end ------
Concurrent Requests: 5
Total Runtime: 2.441638708114624

Full APIs

Post URLs:

Model Dataset Post URL
VGG-16 Cifar10 http://127.0.0.1:8080/vgg16_cifar10
VGG-16 ImageNet http://127.0.0.1:8080/vgg16
Resnet-50 ImageNet http://127.0.0.1:8080/resnet50
Inception v3 ImageNet http://127.0.0.1:8080/inceptionv3

Post Data (JSON):

{
  "file": ""
}

Query Parameters:

Name Type Default Value
top integer 10 One of [1, 3, 5, 10], top=5 returns top 5 predictions.
no-prob integer 0 no-prob=1 returns labels without probabilities. no-prob=0 returns labels and probabilities.

Example post urls (returns top 10 predictions with probabilities):

http://127.0.0.1:8080/vgg16?top=10&no-prob=0

Returns (JSON):

Key Value
success True / False
Predictions Array of prediction results, each element contains {"labels": "cat", "probability": 0.99}
error The error message if any

Example returned json:

{
  "success": true,
  "predictions": [
    {
      "label": "cat",
      "probability": 0.9996376037597656
    },
    {
      "label": "dog",
      "probability": 0.0002855948405340314
    },
    {
      "label": "deer",
      "probability": 0.000021985460989526473
    },
    {
      "label": "bird",
      "probability": 0.000021391952031990513
    },
    {
      "label": "horse",
      "probability": 0.000013297495570441242
    },
    {
      "label": "airplane",
      "probability": 0.000006046993803465739
    },
    {
      "label": "ship",
      "probability": 0.0000044226785576029215
    },
    {
      "label": "frog",
      "probability": 0.0000036349929359857924
    },
    {
      "label": "truck",
      "probability": 0.0000035354278224986047
    },
    {
      "label": "automobile",
      "probability": 0.000002384880417594104
    }
  ],
}

References

You might also like...
 Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Deploy a ML inference service on a budget in less than 10 lines of code.
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Space-event-trace - Tracing service for spaceteam events
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Releases(v0.1.0)
  • v0.1.0(Oct 26, 2021)

    Deep Learning as a Cloud API Service that supports:

    • Pretrained VGG16 model on Cifar10 dataset
    • Pretrained VGG16 model on ImageNet dataset
    • Pretrained Resnet50 model on ImageNet dataset
    • Pretrained Inceptionv3 model on ImageNet dataset
    • Automatic python client code generation
    • Automatic curl client code generation
    • A web interface for the api service

    A minimal version is deployed here:

    http://api.wuhanstudio.uk/

    Source code(tar.gz)
    Source code(zip)
Owner
Wu Han
Ph.D. Student at the University of Exeter in the U.K. for Autonomous System Security. Prior research experience at RT-Thread, LAIX, Xilinx.
Wu Han
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023