2.86% and 15.85% on CIFAR-10 and CIFAR-100

Overview

Shake-Shake regularization

This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake regularization of 3-branch residual networks which was accepted as a workshop contribution at ICLR 2017.

The code is based on fb.resnet.torch.

Table of Contents

  1. Introduction
  2. Results
  3. Usage
  4. Contact

Introduction

The method introduced in this paper aims at helping deep learning practitioners faced with an overfit problem. The idea is to replace, in a multi-branch network, the standard summation of parallel branches with a stochastic affine combination. Applied to 3-branch residual networks, shake-shake regularization improves on the best single shot published results on CIFAR-10 and CIFAR-100 by reaching test errors of 2.86% and 15.85%.

shake-shake

Figure 1: Left: Forward training pass. Center: Backward training pass. Right: At test time.

Bibtex:

@article{Gastaldi17ShakeShake,
   title = {Shake-Shake regularization},
   author = {Xavier Gastaldi},
   journal = {arXiv preprint arXiv:1705.07485},
   year = 2017,
}

Results on CIFAR-10

The base network is a 26 2x32d ResNet (i.e. the network has a depth of 26, 2 residual branches and the first residual block has a width of 32). "Shake" means that all scaling coefficients are overwritten with new random numbers before the pass. "Even" means that all scaling coefficients are set to 0.5 before the pass. "Keep" means that we keep, for the backward pass, the scaling coefficients used during the forward pass. "Batch" means that, for each residual block, we apply the same scaling coefficient for all the images in the mini-batch. "Image" means that, for each residual block, we apply a different scaling coefficient for each image in the mini-batch. The numbers in the Table below represent the average of 3 runs except for the 96d models which were run 5 times.

Forward Backward Level 26 2x32d 26 2x64d 26 2x96d 26 2x112d
Even Even n\a 4.27 3.76 3.58 -
Even Shake Batch 4.44 - -
Shake Keep Batch 4.11 - - -
Shake Even Batch 3.47 3.30 - -
Shake Shake Batch 3.67 3.07 - -
Even Shake Image 4.11 - - -
Shake Keep Image 4.09 - - -
Shake Even Image 3.47 3.20 - -
Shake Shake Image 3.55 2.98 2.86 2.821

Table 1: Error rates (%) on CIFAR-10 (Top 1 of the last epoch)

Other results

Cifar-100:
29 2x4x64d: 15.85%

Reduced CIFAR-10:
26 2x96d: 17.05%1

SVHN:
26 2x96d: 1.4%1

Reduced SVHN:
26 2x96d: 12.32%1

Usage

  1. Install fb.resnet.torch, optnet and lua-stdlib.
  2. Download Shake-Shake
git clone https://github.com/xgastaldi/shake-shake.git
  1. Copy the elements in the shake-shake folder and paste them in the fb.resnet.torch folder. This will overwrite 5 files (main.lua, train.lua, opts.lua, checkpoints.lua and models/init.lua) and add 4 new files (models/shakeshake.lua, models/shakeshakeblock.lua, models/mulconstantslices.lua and models/shakeshaketable.lua).
  2. To reproduce CIFAR-10 results (e.g. 26 2x32d "Shake-Shake-Image" ResNet) on 2 GPUs:
CUDA_VISIBLE_DEVICES=0,1 th main.lua -dataset cifar10 -nGPU 2 -batchSize 128 -depth 26 -shareGradInput false -optnet true -nEpochs 1800 -netType shakeshake -lrShape cosine -baseWidth 32 -LR 0.2 -forwardShake true -backwardShake true -shakeImage true

To get comparable results using 1 GPU, please change the batch size and the corresponding learning rate:

CUDA_VISIBLE_DEVICES=0 th main.lua -dataset cifar10 -nGPU 1 -batchSize 64 -depth 26 -shareGradInput false -optnet true -nEpochs 1800 -netType shakeshake -lrShape cosine -baseWidth 32 -LR 0.1 -forwardShake true -backwardShake true -shakeImage true

A 26 2x96d "Shake-Shake-Image" ResNet can be trained on 2 GPUs using:

CUDA_VISIBLE_DEVICES=0,1 th main.lua -dataset cifar10 -nGPU 2 -batchSize 128 -depth 26 -shareGradInput false -optnet true -nEpochs 1800 -netType shakeshake -lrShape cosine -baseWidth 96 -LR 0.2 -forwardShake true -backwardShake true -shakeImage true
  1. To reproduce CIFAR-100 results (e.g. 29 2x4x64d "Shake-Even-Image" ResNeXt) on 2 GPUs:
CUDA_VISIBLE_DEVICES=0,1 th main.lua -dataset cifar100 -depth 29 -baseWidth 64 -groups 4 -weightDecay 5e-4 -batchSize 32 -netType shakeshake -nGPU 2 -LR 0.025 -nThreads 8 -shareGradInput true -nEpochs 1800 -lrShape cosine -forwardShake true -backwardShake false -shakeImage true

Note

Changes made to fb.resnet.torch files:

main.lua
Ln 17, 54-59, 81-100: Adds a log

train.lua
Ln 36-38 58-60 206-213: Adds the cosine learning rate function
Ln 88-89: Adds the learning rate to the elements printed on screen

opts.lua
Ln 21-64: Adds Shake-Shake options

checkpoints.lua
Ln 15-16: Adds require 'models/shakeshakeblock', 'models/shakeshaketable' and require 'std'
Ln 60-61: Avoids using the fb.resnet.torch deepcopy (it doesn't seem to be compatible with the BN in shakeshakeblock) and replaces it with the deepcopy from stdlib
Ln 67-86: Saves only the last model

models/init.lua
Ln 91-92: Adds require 'models/mulconstantslices', require 'models/shakeshakeblock' and require 'models/shakeshaketable'

The main model is in shakeshake.lua. The residual block model is in shakeshakeblock.lua. mulconstantslices.lua is just an extension of nn.mulconstant that multiplies elements of a vector with image slices of a mini-batch tensor. shakeshaketable.lua contains the method used for CIFAR-100 since the ResNeXt code uses a table implementation instead of a module version.

Reimplementations

Pytorch
https://github.com/hysts/pytorch_shake_shake

Tensorflow
https://github.com/tensorflow/models/blob/master/research/autoaugment/
https://github.com/tensorflow/tensor2tensor

Contact

xgastaldi.mba2011 at london.edu
Any discussions, suggestions and questions are welcome!

References

(1) Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment: Learning Augmentation Policies from Data. In arXiv:1805.09501, May 2018.

Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022