Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Related tags

Deep Learningmonodle
Overview

Delving into Localization Errors for Monocular 3D Detection

By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang.

Introduction

This repository is an official implementation of the paper 'Delving into Localization Errors for Monocular 3D Detection'. In this work, by intensive diagnosis experiments, we quantify the impact introduced by each sub-task and found the ‘localization error’ is the vital factor in restricting monocular 3D detection. Besides, we also investigate the underlying reasons behind localization errors, analyze the issues they might bring, and propose three strategies.

vis

Usage

Installation

This repo is tested on our local environment (python=3.6, cuda=9.0, pytorch=1.1), and we recommend you to use anaconda to create a vitural environment:

conda create -n monodle python=3.6

Then, activate the environment:

conda activate monodle

Install Install PyTorch:

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch

and other requirements:

pip install -r requirements.txt

Data Preparation

Please download KITTI dataset and organize the data as follows:

#ROOT
  |data/
    |KITTI/
      |ImageSets/ [already provided in this repo]
      |object/			
        |training/
          |calib/
          |image_2/
          |label/
        |testing/
          |calib/
          |image_2/

Training & Evaluation

Move to the workplace and train the network:

 cd #ROOT
 cd experiments/example
 python ../../tools/train_val.py --config config_patchnet.yaml

The model will be evaluated automatically if the training completed. If you only want evaluate your trained model (or the provided pretrained model) , you can modify the test part configuration in the .yaml file and use the following command:

python ../../tools/train_val.py --config config_patchnet.yaml --e

For ease of use, we also provide a pre-trained checkpoint, which can be used for evaluation directly. See the below table to check the performance.

[email protected] [email protected]. [email protected]
In original paper 17.45 13.66 11.68
In this repo 17.94 13.72 12.10

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Ma_2021_CVPR,
author = {Ma, Xinzhu and Zhang, Yinmin, and Xu, Dan and Zhou, Dongzhan and Yi, Shuai and Li, Haojie and Ouyang, Wanli},
title = {Delving into Localization Errors for Monocular 3D Object Detection},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}}

Acknowlegment

This repo benefits from the excellent work CenterNet. Please also consider citing it.

License

This project is released under the MIT License.

Contact

If you have any question about this project, please feel free to contact [email protected].

Owner
XINZHU.MA
PhD student at the University of Sydney.
XINZHU.MA
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022