Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

Overview

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet.

use python main.py to start training.

PSM-Net

Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network" paper (CVPR 2018) by Jia-Ren Chang and Yong-Sheng Chen.

Official repository: JiaRenChang/PSMNet

model

Usage

1) Requirements

  • Python3.5+
  • Pytorch0.4
  • Opencv-Python
  • Matplotlib
  • TensorboardX
  • Tensorboard

All dependencies are listed in requirements.txt, you execute below command to install the dependencies.

pip install -r requirements.txt

2) Train

usage: train.py [-h] [--maxdisp MAXDISP] [--logdir LOGDIR] [--datadir DATADIR]
                [--cuda CUDA] [--batch-size BATCH_SIZE]
                [--validate-batch-size VALIDATE_BATCH_SIZE]
                [--log-per-step LOG_PER_STEP]
                [--save-per-epoch SAVE_PER_EPOCH] [--model-dir MODEL_DIR]
                [--lr LR] [--num-epochs NUM_EPOCHS]
                [--num-workers NUM_WORKERS]

PSMNet

optional arguments:
  -h, --help            show this help message and exit
  --maxdisp MAXDISP     max diparity
  --logdir LOGDIR       log directory
  --datadir DATADIR     data directory
  --cuda CUDA           gpu number
  --batch-size BATCH_SIZE
                        batch size
  --validate-batch-size VALIDATE_BATCH_SIZE
                        batch size
  --log-per-step LOG_PER_STEP
                        log per step
  --save-per-epoch SAVE_PER_EPOCH
                        save model per epoch
  --model-dir MODEL_DIR
                        directory where save model checkpoint
  --lr LR               learning rate
  --num-epochs NUM_EPOCHS
                        number of training epochs
  --num-workers NUM_WORKERS
                        num workers in loading data

For example:

python train.py --batch-size 16 \
                --logdir log/exmaple \
                --num-epochs 500

3) Visualize result

This repository uses tensorboardX to visualize training result. Find your log directory and launch tensorboard to look over the result. The default log directory is /log.

tensorboard --logdir <your_log_dir>

Here are some of my training results (have been trained for 1000 epochs on KITTI2015):

disp

left

loss

error

4) Inference

usage: inference.py [-h] [--maxdisp MAXDISP] [--left LEFT] [--right RIGHT]
                    [--model-path MODEL_PATH] [--save-path SAVE_PATH]

PSMNet inference

optional arguments:
  -h, --help            show this help message and exit
  --maxdisp MAXDISP     max diparity
  --left LEFT           path to the left image
  --right RIGHT         path to the right image
  --model-path MODEL_PATH
                        path to the model
  --save-path SAVE_PATH
                        path to save the disp image

For example:

python inference.py --left test/left.png \
                    --right test/right.png \
                    --model-path checkpoint/08/best_model.ckpt \
                    --save-path test/disp.png

5) Pretrained model

A model trained for 1000 epochs on KITTI2015 dataset can be download here. (I choose the best model among the 1000 epochs)

state {
    'epoch': 857,
    '3px-error': 3.466
}

Task List

  • Train
  • Inference
  • KITTI2015 dataset
  • Scene Flow dataset
  • Visualize
  • Pretained model

Contact

Email: [email protected]

Welcome for any discussions!

Owner
XIAOTIAN LIU
XIAOTIAN LIU
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022