Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Overview

Infinitely Deep Bayesian Neural Networks with SDEs

This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stochastic variational inference. A rudimentary JAX implementation of differentiable SDE solvers is also provided, refer to torchsde [2] for a full set of differentiable SDE solvers in Pytorch and similarly to torchdiffeq [3] for differentiable ODE solvers.

Continuous-depth hidden unit trajectories in Neural ODE vs uncertain posterior dynamics SDE-BNN.

Installation

This library runs on jax==0.1.77 and torch==1.6.0. To install all other requirements:

pip install -r requirements.txt

Note: Package versions may change, refer to official JAX installation instructions here.

JaxSDE: Differentiable SDE Solvers in JAX

The jaxsde library contains SDE solvers in the Ito and Stratonovich form. Solvers of different orders can be specified with the following method={euler_maruyama|milstein|euler_heun} (strong orders 0.5|1|0.5 and orders 1|1|1 in the case of an additive noise SDE). Stochastic adjoint (sdeint_ito) training mode does not work efficiently yet, use sdeint_ito_fixed_grid for now. Tradeoff solver speed for precision during training or inference by adjusting --nsteps <# steps>.

Usage

Default solver: Backpropagation through the solver.

from jaxsde.jaxsde.sdeint import sdeint_ito_fixed_grid

y1 = sdeint_ito_fixed_grid(f, g, y0, ts, rng, fw_params, method="euler_maruyama")

Stochastic adjoint: Using O(1) memory instead of solving an adjoint SDE in the backward pass.

from jaxsde.jaxsde.sdeint import sdeint_ito

y1 = sdeint_ito(f, g, y0, ts, rng, fw_params, method="milstein")

Brax: Bayesian SDE Framework in JAX

Implementation of composable Bayesian layers in the stax API. Our SDE Bayesian layers can be used with the SDEBNN block composed with multiple parameterizations of time-dependent layers in diffeq_layers. Sticking-the-landing (STL) trick can be enabled during training with --stl for improving convergence rate. Augment the inputs by a custom amount --aug <integer>, set the number of samples averaged over with --nsamples <integer>. If memory constraints pose a problem, train in gradient accumulation mode: --acc_grad and gradient checkpointing: --remat.

Samples from SDEBNN-learned predictive prior and posterior density distributions.

Usage

All examples can be swapped in with different vision datasets. For better readability, tensorboard logging has been excluded (see torchbnn instead).

Toy 1D regression to learn complex posteriors:

python examples/jax/sdebnn_toy1d.py --ds cos --activn swish --loss laplace --kl_scale 1. --diff_const 0.2 --driftw_scale 0.1 --aug_dim 2 --stl --prior_dw ou

Image Classification:

To train an SDEBNN model:

python examples/jax/sdebnn_classification.py --output <output directory> --model sdenet --aug 2 --nblocks 2-2-2 --diff_coef 0.2 --fx_dim 64 --fw_dims 2-64-2 --nsteps 20 --nsamples 1

To train a ResNet baseline, specify --model resnet and for a Bayesian ResNet baseline, specify --meanfield_sdebnn.

TorchBNN: SDE-BNN in Pytorch

A PyTorch implementation of the Brax framework powered by the torchsde backend.

Usage

All examples can be swapped in with different vision datasets and includes tensorboard logging for critical metrics.

Toy 1D regression to learn multi-modal posterior:

python examples/torch/sdebnn_toy1d.py --output_dir <dst_path>

Arbitrarily expression approximate posteriors from learning non-Gaussian marginals.

Image Classification:

All hyperparameters can be found in the training script. Train with adjoint for memory efficient backpropagation and adaptive mode for adaptive computation (and ensure --adjoint_adaptive True if training with adjoint and adaptive modes).

python examples/torch/sdebnn_classification.py --train-dir <output directory> --data cifar10 --dt 0.05 --method midpoint --adjoint True --adaptive True --adjoint_adaptive True --inhomogeneous True

References

[1] Winnie Xu, Ricky T. Q. Chen, Xuechen Li, David Duvenaud. "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations." Preprint 2021. [arxiv]

[2] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud. "Scalable Gradients for Stochastic Differential Equations." AISTATS 2020. [arxiv]

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud. "Neural Ordinary Differential Equations." NeurIPS. 2018. [arxiv]


If you found this library useful in your research, please consider citing

@article{xu2021sdebnn,
  title={Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations},
  author={Xu, Winnie and Chen, Ricky T. Q. and Li, Xuechen and Duvenaud, David},
  archivePrefix = {arXiv},
  year={2021}
}
Owner
Winnie Xu
Undergrad in CS/Stats/Math '22 @ UToronto. Working on something secret @cohere-ai. Deep neural networks @for-ai @VectorInstitute. Prev. @google-research @NVIDIA
Winnie Xu
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022