(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

Overview

How Do Vision Transformers Work?

This repository provides a PyTorch implementation of "How Do Vision Transformers Work?" In the paper, we show that multi-head self-attentions (MSAs) for computer vision is NOT for capturing long-range dependency. In particular, we address the following three key questions of MSAs and Vision Transformers (ViTs):

  1. What properties of MSAs do we need to better optimize NNs? Do the long-range dependencies of MSAs help NNs learn?
  2. Do MSAs act like Convs? If not, how are they different?
  3. How can we harmonize MSAs with Convs? Can we just leverage their advantages?

We demonstrate that (1) MSAs flatten the loss landscapes, (2) MSA and Convs are complementary because MSAs are low-pass filters and convolutions (Convs) are high-pass filter, and (3) MSAs at the end of a stage significantly improve the accuracy.

Let's find the detailed answers below!

I. What Properties of MSAs Do We Need to Improve Optimization?

MSAs improve not only accuracy but also generalization by flattening the loss landscapes. Such improvement is primarily attributable to their data specificity, NOT long-range dependency 😱 Their weak inductive bias disrupts NN training. On the other hand, ViTs suffers from non-convex losses. MSAs allow negative Hessian eigenvalues in small data regimes. Large datasets and loss landscape smoothing methods alleviate this problem.

II. Do MSAs Act Like Convs?

MSAs and Convs exhibit opposite behaviors. For example, MSAs are low-pass filters, but Convs are high-pass filters. In addition, Convs are vulnerable to high-frequency noise but that MSAs are not. Therefore, MSAs and Convs are complementary.

III. How Can We Harmonize MSAs With Convs?

Multi-stage neural networks behave like a series connection of small individual models. In addition, MSAs at the end of a stage play a key role in prediction. Based on these insights, we propose design rules to harmonize MSAs with Convs. NN stages using this design pattern consists of a number of CNN blocks and one (or a few) MSA block. The design pattern naturally derives the structure of canonical Transformer, which has one MLP block for one MSA block.


In addition, we also introduce AlterNet, a model in which Conv blocks at the end of a stage are replaced with MSA blocks. Surprisingly, AlterNet outperforms CNNs not only in large data regimes but also in small data regimes. This contrasts with canonical ViTs, models that perform poorly on small amounts of data.

This repository is based on the official implementation of "Blurs Make Results Clearer: Spatial Smoothings to Improve Accuracy, Uncertainty, and Robustness". In this paper, we show that a simple (non-trainable) 2 ✕ 2 box blur filter improves accuracy, uncertainty, and robustness simultaneously by ensembling spatially nearby feature maps of CNNs. MSA is not simply generalized Conv, but rather a generalized (trainable) blur filter that complements Conv. Please check it out!

Getting Started

The following packages are required:

  • pytorch
  • matplotlib
  • notebook
  • ipywidgets
  • timm
  • einops
  • tensorboard
  • seaborn (optional)

We mainly use docker images pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime for the code.

See classification.ipynb for image classification. Run all cells to train and test models on CIFAR-10, CIFAR-100, and ImageNet.

Metrics. We provide several metrics for measuring accuracy and uncertainty: Acuracy (Acc, ↑) and Acc for 90% certain results (Acc-90, ↑), negative log-likelihood (NLL, ↓), Expected Calibration Error (ECE, ↓), Intersection-over-Union (IoU, ↑) and IoU for certain results (IoU-90, ↑), Unconfidence (Unc-90, ↑), and Frequency for certain results (Freq-90, ↑). We also define a method to plot a reliability diagram for visualization.

Models. We provide AlexNet, VGG, pre-activation VGG, ResNet, pre-activation ResNet, ResNeXt, WideResNet, ViT, PiT, Swin, MLP-Mixer, and Alter-ResNet by default.

Visualizing the Loss Landscapes

Refer to losslandscape.ipynb for exploring the loss landscapes. It requires a trained model. Run all cells to get predictive performance of the model for weight space grid. We provide a sample loss landscape result.

Evaluating Robustness on Corrupted Datasets

Refer to robustness.ipynb for evaluation corruption robustness on corrupted datasets such as CIFAR-10-C and CIFAR-100-C. It requires a trained model. Run all cells to get predictive performance of the model on datasets which consist of data corrupted by 15 different types with 5 levels of intensity each. We provide a sample robustness result.

How to Apply MSA to Your Own Model

We find that MSA complements Conv (not replaces Conv), and MSA closer to the end of stage improves predictive performance significantly. Based on these insights, we propose the following build-up rules:

  1. Alternately replace Conv blocks with MSA blocks from the end of a baseline CNN model.
  2. If the added MSA block does not improve predictive performance, replace a Conv block located at the end of an earlier stage with an MSA
  3. Use more heads and higher hidden dimensions for MSA blocks in late stages.

In the animation above, we replace Convs of ResNet with MSAs one by one according to the build-up rules. Note that several MSAs in c3 harm the accuracy, but the MSA at the end of c2 improves it. As a result, surprisingly, the model with MSAs following the appropriate build-up rule outperforms CNNs even in the small data regime, e.g., CIFAR!

Caution: Investigate Loss Landscapes and Hessians With l2 Regularization on Augmented Datasets

Two common mistakes ⚠️ are investigating loss landscapes and Hessians (1) 'without considering l2 regularization' on (2) 'clean datasets'. However, note that NNs are optimized with l2 regularization on augmented datasets. Therefore, it is appropriate to visualize 'NLL + l2' on 'augmented datasets'. Measuring criteria without l2 on clean dataset would give incorrect (even opposite) results.

Citation

If you find this useful, please consider citing 📑 the paper and starring 🌟 this repository. Please do not hesitate to contact Namuk Park (email: namuk.park at gmail dot com, twitter: xxxnell) with any comments or feedback.

BibTex is TBD.

License

All code is available to you under Apache License 2.0. CNN models build off the torchvision models which are BSD licensed. ViTs build off the PyTorch Image Models and Vision Transformer - Pytorch which are Apache 2.0 and MIT licensed.

Copyright the maintainers.

Owner
xxxnell
Programmer & ML researcher
xxxnell
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022