This is the material used in my free Persian course: Machine Learning with Python

Overview

Machine_Learning_intro

:) سلام دوستان

This is the material used in my free Persian course: Machine Learning with Python (available on YouTube).

This 2 hours long course offers a practical introduction into Machine Learning with Python. this course is for you if you are familiar with data analytics libraries in Python (Pandas, NumPy, Matplotlib) and you are looking for a hands-on introduction to Machine Learning. After finishing this course, you will grasp the basic concepts in Machine Learning and be able to use its techniques on any data with Scikit-Learn, the most commonly used library for Machine Learning in Python.

Note

Oddly, the notebook cells are horizontally aligned when rendered on GitHub. I haven't found the solution to this problem unfortunately. However, they are correctly aligned when rendered on Jupyter, so I recommend downloading the notebook files and opening them with Jupyter or Colab or similar IDEs.


Topics covered:

Intro_to_ML_1:

  • 1:
    • What is Machine Learning?
    • Types of Machine Learning
    • Types of Supervised Learning
  • 2.1:
    • Types of Regression
    • Simple Linear Regression
  • 2.2:
    • Model Evaluation in Regression
    • Overfitting
    • Train/test split
    • Cross-Validation
    • Accuracy Metrics for Regression
    • Simple Linear Regression with Python
  • 2.3:
    • Multiple Linear Regression with Python
    • Polynomial Regression with Python
  • 2.4:
    • Regularization
    • Ridge Regression with Python
    • Lasso Regression with Python

Intro_to_ML_2:

  • 3.1:
    • Types of Classification
    • K-nearest neighbors (KNN)
  • 3.2:
    • Evaluation metrics in Classification
    • Confusion Matrix
    • KNN with Python
  • 3.3:
    • Decision Trees with Python
    • Logistic Regression with Python
    • Support Vector Machines (SVM) with Python
  • 3.4:
    • Neural Networks
    • Perceptron with Python
    • Multi-Layer Perceptron (MLP) with Python

Intro_to_ML_3:

  • 4:
    • Why reduce dimensionality?
    • Feature Selection with Python
    • Feature Extraction with Python

Contact

Feel free to email me your questions here: [email protected]

Material gathered, created, and taught by Yara Mohamadi.

Owner
Yara Mohamadi
Yara Mohamadi
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022