A toolset for creating Qualtrics-based IAT experiments

Overview

Qualtrics IAT Tool

A web app for generating the Implicit Association Test (IAT) running on Qualtrics

Online Web App

The app is hosted by Streamlit, a Python-based web framework. You can use the app here: Qualtrics IAT Tool.

Run Web App Offline

Alternatively, you can run the app offline. The general steps are:

  1. Download the latest version of the repository.
  2. Install Python and Streamlit.
  3. Run the web app in a Terminal with the command: streamlit run your_directory/qualtrics_iat/web_app.py

Citation:

Cui Y., Robinson, J.D., Kim, S.K., Kypriotakis G., Green C.E., Shete S.S., & Cinciripini P.M., An open source web app for creating and scoring Qualtrics-based implicit association test. Behavior Research Methods (submitted)

Key Functionalities

The web app has three key functionalities: IAT Generator, Qualtrics Tools, and IAT Data Scorer. Each functionality is clearly described on the web app regarding what parameters are expected and what they mean. If you have any questions, please feel free to leave a comment or send your inquiries to me.

IAT Generator

In this section, you can generate the Qualtrics survey template to run the IAT experiment. Typically, you need to consider specifying the following parameters. We'll use the classic flower-insect IAT as an example. As a side note, there are a few other IAT tasks (e.g., gender-career) in the app for your reference.

  • Positive Target Concept: Flower
  • Negative Target Concept: Insect
  • Positive Target Stimuli: Orchid, Tulip, Rose, Daffodil, Daisy, Lilac, Lily
  • Negative Target Stimuli: Wasp, Flea, Roach, Centipede, Moth, Bedbug, Gnat
  • Positive Attribute Concept: Pleasant
  • Negative Attribute Concept: Unpleasant
  • Positive Attribute Stimuli: Joy, Happy, Laughter, Love, Friend, Pleasure, Peace, Wonderful
  • Negative Attribute Stimuli: Evil, Agony, Awful, Nasty, Terrible, Horrible, Failure, War

Once you specify these parameters, you can generate a Qualtrics template file, from which you can create a Qualtrics survey that is ready to be administered. Please note that not all Qualtrics account types support creating surveys from a template. Alternatively, you can obtain the JavaScript code of running the IAT experiment and add the code to a Qualtrics question. If you do this, please make sure that you set the proper embedded data fields.

Qualtrics Tools

In this section, you can directly interact with the Qualtrics server by invoking its APIs. To use these APIs, you need to obtain the token in your account settings. Key functionalities include:

  • Upload Images to Qualtrics Graphic Library: You can upload images from your local computer to your Qualtrics Graphics Library. You need to specify the library ID # and the name of the folder to which the images will be uploaded. If the upload succeeds, the web app will return the URLs for these images. You can set these URLs as stimuli in the IAT if your experiment uses pictures.

  • Create Surveys: You can create surveys by uploading a QSF file or the JSON text. Please note that the QSF file uses JSON as its content. If you're not sure about the JSON content, you can inspect a template file.

  • Export Survey Responses: You can export a survey's responses for offline processing. You need to specify the library ID # and the export file format (e.g., csv).

  • Delete Images: You can delete images from your Qualtrics Graphics Library. You need to specify the library ID # and the IDs for the images that you want to delete.

  • Delete Survey: You can delete surveys from your Qualtrics Library. You need to specify the survey ID #.

IAT Data Scorer

In this section, you can score the IAT data from the exported survey response. Currently, there are two calculation algorithms supported: the conventional and the improved.

Citation for the algorithms: Greenwald et al. Understanding and Using the Implicit Association Test: I. An Improved Scoring Algorithm. Journal of Personality and Social Psychology 2003 (85)2:192-216

The Conventional Algorithm

  1. Use data from B4 & B7 (counter-balanced order will be taken care of in the calculation).
  2. Nonsystematic elimination of subjects for excessively slow responding and/or high error rates.
  3. Drop the first two trials of each block.
  4. Recode latencies outside 300/3,000 boundaries to the nearer boundary value.
  5. 5.Log-transform the resulting values.
  6. Average the resulting values for each of the two blocks.
  7. Compute the difference: B7 - B4.

The Improved Algorithm

  1. Use data from B3, B4, B6, & B7 (counter-balanced order will be taken care of in the calculation).
  2. Eliminate trials with latencies > 10,000 ms; Eliminate subjects for whom more than 10% of trials have latency less than 300 ms.
  3. Use all trials; Delete trials with latencies below 400 ms (alternative).
  4. Compute mean of correct latencies for each block. Compute SD of correct latencies for each block (alternative).
  5. Compute one pooled SD for all trials in B3 & B6, another for B4 & B7; Compute one pooled SD for correct trials in B3 & B6, another for B4 & B7 (alternative).
  6. Replace each error latency with block mean (computed in Step 5) + 600 ms; Replace each error latency with block mean + 2 x block SD of correct responses (alternative 1); Use latencies to correct responses when correction to error responses is required (alternative 2).
  7. Average the resulting values for each of the four blocks.
  8. Compute two differences: B6 - B3 and B7 - B4.
  9. Divide each difference by its associated pooled-trials SD.
  10. Average the two quotients.

Questions?

If you have any questions or would like to contribute to this project, please send me an email: [email protected].

License

MIT License

kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
ML models and internal tensors 3D visualizer

The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope

Zetane Systems 787 Dec 30, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022