pix2pix in tensorflow.js

Overview

pix2pix in tensorflow.js

This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite

See a live demo here: https://yining1023.github.io/pix2pix_tensorflowjs/

Screen_Shot_2018_06_17_at_11_06_09_PM

Try it yourself: Download/clone the repository and run it locally:

git clone https://github.com/yining1023/pix2pix_tensorflowjs.git
cd pix2pix_tensorflowjs
python3 -m http.server

Credits: This project is based on affinelayer's pix2pix-tensorflow. I want to thank christopherhesse, nsthorat, and dsmilkov for their help and suggestions from this Github issue.

How to train a pix2pix(edges2xxx) model from scratch

    1. Prepare the data
    1. Train the model
    1. Test the model
    1. Export the model
    1. Port the model to tensorflow.js
    1. Create an interactive interface in the browser

1. Prepare the data

  • 1.1 Scrape images from google search
  • 1.2 Remove the background of the images
  • 1.3 Resize all images into 256x256 px
  • 1.4 Detect edges of all images
  • 1.5 Combine input images and target images
  • 1.6 Split all combined images into two folders: train and val

Before we start, check out affinelayer's Create your own dataset. I followed his instrustion for steps 1.3, 1.5 and 1.6.

1.1 Scrape images from google search

We can create our own target images. But for this edge2pikachu project, I downloaded a lot of images from google. I'm using this google_image_downloader to download images from google. After downloading the repo above, run -

$ python image_download.py <query> <number of images>

It will download images and save it to the current directory.

1.2 Remove the background of the images

Some images have some background. I'm using grabcut with OpenCV to remove background Check out the script here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/grabcut.py To run the script-

$ python grabcut.py <filename>

It will open an interactive interface, here are some instructions: https://github.com/symao/InteractiveImageSegmentation Here's an example of removing background using grabcut:

Screen Shot 2018 03 13 at 7 03 28 AM

1.3 Resize all images into 256x256 px

Download pix2pix-tensorflow repo. Put all images we got into photos/original folder Run -

$ python tools/process.py --input_dir photos/original --operation resize --output_dir photos/resized

We should be able to see a new folder called resized with all resized images in it.

1.4 Detect edges of all images

The script that I use to detect edges of images from one folder at once is here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/edge-detection.py, we need to change the path of the input images directory on line 31, and create a new empty folder called edges in the same directory. Run -

$ python edge-detection.py

We should be able to see edged-detected images in the edges folder. Here's an example of edge detection: left(original) right(edge detected)

0_batch2 0_batch2_2

1.5 Combine input images and target images

python tools/process.py --input_dir photos/resized --b_dir photos/blank --operation combine --output_dir photos/combined

Here is an example of the combined image: Notice that the size of the combined image is 512x256px. The size is important for training the model successfully.

0_batch2

Read more here: affinelayer's Create your own dataset

1.6 Split all combined images into two folders: train and val

python tools/split.py --dir photos/combined

Read more here: affinelayer's Create your own dataset

I collected 305 images for training and 78 images for testing.

2. Train the model

# train the model
python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

I used the High Power Computer(HPC) at NYU to train the model. You can see more instruction here: https://github.com/cvalenzuela/hpc. You can request GPU and submit a job to HPC, and use tunnels to tranfer large files between the HPC and your computer.

The training takes me 4 hours and 16 mins. After train, there should be a pikachu_train folder with checkpoint in it. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

3. Test the model

# test the model
python pix2pix.py --mode test --output_dir pikachu_test --input_dir pikachu/val --checkpoint pikachu_train

After testing, there should be a new folder called pikachu_test. In the folder, if you open the index.html, you should be able to see something like this in your browser:

Screen_Shot_2018_03_15_at_8_42_48_AM

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

4. Export the model

python pix2pix.py --mode export --output_dir /export/ --checkpoint /pikachu_train/ --which_direction BtoA

It will create a new export folder

5. Port the model to tensorflow.js

I followed affinelayer's instruction here: https://github.com/affinelayer/pix2pix-tensorflow/tree/master/server#exporting

cd server
python tools/export-checkpoint.py --checkpoint ../export --output_file static/models/pikachu_BtoA.pict

We should be able to get a file named pikachu_BtoA.pict, which is 54.4 MB. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

6. Create an interactive interface in the browser

Copy the model we get from step 5 to the models folder.

Owner
Yining Shi
Creative Coding 👩‍💻+ Machine Learning 🤖
Yining Shi
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022