PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

Related tags

Deep LearningMemSeg
Overview

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments

Introduction

This repository is a PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments. This work is based on semseg.

The codebase mainly uses ResNet18, ResNet50 and MobileNet-V2 as backbone with ASPP module and can be easily adapted to other basic semantic segmentation structures.

Sample experimented dataset is RUGD.

Requirement

Hardware: >= 11G GPU memory

Software: PyTorch>=1.0.0, python3

Usage

For installation, follow installation steps below or recommend you to refer to the instructions described here.

For its pretrained ResNet50 backbone model, you can download from URL.

Getting Started

Installation

  1. Clone this repository.
git clone https://github.com/youngsjjn/MemSeg.git
  1. Install Python dependencies.
pip install -r requirements.txt

Implementation

  1. Download datasets (i.e. RUGD) and change the root of data path in config.

Download data list of RUGD here.

  1. Inference If you want to inference on pretrained models, download pretrained network in my drive and save them in ./exp/rugd/.

Inference "ResNet50 + Deeplabv3" without the memory module

sh tool/test.sh rugd deeplab50

Inference "ResNet50 + Deeplabv3" with the memory module

sh tool/test_mem.sh rugd deeplab50mem
Network mIoU
ResNet18 + PSPNet 33.42
ResNet18 + PSPNet (Memory) 34.13
ResNet18 + Deeplabv3 33.48
ResNet18 + Deeplabv3 (Memory) 35.07
ResNet50 + Deeplabv3 36.77
ResNet50 + Deeplabv3 (Memory) 37.71
  1. Train (Evaluation is included at the end of the training) Train "ResNet50 + Deeplabv3" without the memory module
sh tool/train.sh rugd deeplab50

Train "ResNet50 + Deeplabv3" without the memory module

sh tool/train_mem.sh rugd deeplab50mem

Here, the example is for training or testing on "ResNet50 + Deeplabv3". If you want to train other networks, please change "deeplab50" or "deeplab50mem" as a postfix of a config file name.

For example, train "ResNet18 + PSPNet" with the memory module:

sh tool/train_mem.sh rugd pspnet18mem

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{DBLP:journals/corr/abs-2108-05635,
  author    = {Youngsaeng Jin and
               David K. Han and
               Hanseok Ko},
  title     = {Memory-based Semantic Segmentation for Off-road Unstructured Natural
               Environments},
  journal   = {CoRR},
  volume    = {abs/2108.05635},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.05635},
  eprinttype = {arXiv},
  eprint    = {2108.05635},
  timestamp = {Wed, 18 Aug 2021 19:45:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-05635.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022