StarGAN - Official PyTorch Implementation (CVPR 2018)

Overview

StarGAN - Official PyTorch Implementation

***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 *****

This repository provides the official PyTorch implementation of the following paper:

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi1,2, Minje Choi1,2, Munyoung Kim2,3, Jung-Woo Ha2, Sung Kim2,4, Jaegul Choo1,2    
1Korea University, 2Clova AI Research, NAVER Corp.
3The College of New Jersey, 4Hong Kong University of Science and Technology
https://arxiv.org/abs/1711.09020

Abstract: Recent studies have shown remarkable success in image-to-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

Dependencies

Downloading datasets

To download the CelebA dataset:

git clone https://github.com/yunjey/StarGAN.git
cd StarGAN/
bash download.sh celeba

To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website. Then, you need to create a folder structure as described here.

Training networks

To train StarGAN on CelebA, run the training script below. See here for a list of selectable attributes in the CelebA dataset. If you change the selected_attrs argument, you should also change the c_dim argument accordingly.

# Train StarGAN using the CelebA dataset
python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

# Test StarGAN using the CelebA dataset
python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
               --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
               --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
               --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To train StarGAN on RaFD:

# Train StarGAN using the RaFD dataset
python main.py --mode train --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/train \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

# Test StarGAN using the RaFD dataset
python main.py --mode test --dataset RaFD --image_size 128 \
               --c_dim 8 --rafd_image_dir data/RaFD/test \
               --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
               --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To train StarGAN on both CelebA and RafD:

# Train StarGAN using both CelebA and RaFD datasets
python main.py --mode=train --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

# Test StarGAN using both CelebA and RaFD datasets
python main.py --mode test --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
               --sample_dir stargan_both/samples --log_dir stargan_both/logs \
               --model_save_dir stargan_both/models --result_dir stargan_both/results

To train StarGAN on your own dataset, create a folder structure in the same format as RaFD and run the command:

# Train StarGAN on custom datasets
python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

# Test StarGAN on custom datasets
python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
               --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \
               --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
               --model_save_dir stargan_custom/models --result_dir stargan_custom/results

Using pre-trained networks

To download a pre-trained model checkpoint, run the script below. The pre-trained model checkpoint will be downloaded and saved into ./stargan_celeba_128/models directory.

$ bash download.sh pretrained-celeba-128x128

To translate images using the pre-trained model, run the evaluation script below. The translated images will be saved into ./stargan_celeba_128/results directory.

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \
                 --model_save_dir='stargan_celeba_128/models' \
                 --result_dir='stargan_celeba_128/results'

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2018stargan,
author={Yunjey Choi and Minje Choi and Munyoung Kim and Jung-Woo Ha and Sunghun Kim and Jaegul Choo},
title={StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}

Acknowledgements

This work was mainly done while the first author did a research internship at Clova AI Research, NAVER. We thank all the researchers at NAVER, especially Donghyun Kwak, for insightful discussions.

Owner
Yunjey Choi
Yunjey Choi
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022