Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

Related tags

Deep LearningSMCG
Overview

SMCG

Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

Introduction

We investigate a novel and challenging task, namely controllable video captioning with an exemplar sentence. Formally, given a video and a syntactically valid exemplar sentence, the task aims to generate one caption which not only describes the semantic contents of the video, but also follows the syntactic form of the given exemplar sentence. In order to tackle such an exemplar-based video captioning task, we propose a novel Syntax Modulated Caption Generator (SMCG) incorporated in an encoder-decoder-reconstructor architecture.

Dependency

  • python 2.7.2
  • torch 1.1.0
  • java openjdk version "10.0.2" 2018-07-17
  • StanfordCoreNLP

Download Features and Preprocess Data

For the MSRVTT dataset, please download the following files into the './msrvtt/msrvtt_data/' folder:

For the ActivityNet Captionsd dataset, please download the following files into the './activitynet/activitynet_data/' folder:

Data Preprocessing

  • Go to the './msrvtt/process_msrvtt_data/' folder, and run:
python prepro_vocab_parse_pos.py
python fill_template.py
  • Go to the './activitynet/process_activitynet_data/' folder, and run:
python prepro_anetcoco_vocab_pos_parse.py
python fill_template.py

Model Training and Testing

  • For the MSRVTT dataset, please go to the './msrvtt/src/' folder, and train the model by:
python train.py --gpu xx
  • For model inference and evaluation, run:
bash eval.sh 
bash control.sh 
  • Note: 'eval.sh' is used to evaluate the generated exemplar-based captions with conventional captioning metrics. 'control.sh' is used to compare the generated exemplar-based captions with the provided exemplar captions from the syntactic aspect, i.e., compute the edit distance between their parse trees.

  • For the ActivityNet Captions dataset, please go to the './activitynet/src/' folder, and train/test the model as on the MSRVTT dataset.

Citation

@inproceedings{yuan2020Control,
  title={Controllable Video Captioning with an Exemplar Sentence},
  author={Yuan, Yitian and Ma, Lin and Wang, Jingwen and Zhu, Wenwu},
  booktitle={the 28th ACM International Conference on Multimedia (MM ’20)},
  year={2020}
}
Owner
doggy
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022