GeDML is an easy-to-use generalized deep metric learning library

Overview

Logo

Documentation build

News

  • [2021-9-6]: v0.0.0 has been released.

Introduction

GeDML is an easy-to-use generalized deep metric learning library, which contains:

  • State-of-the-art DML algorithms: We contrain 18+ losses functions and 6+ sampling strategies, and divide these algorithms into three categories (i.e., collectors, selectors, and losses).
  • Bridge bewteen DML and SSL: We attempt to bridge the gap between deep metric learning and self-supervised learning through specially designed modules, such as collectors.
  • Auxiliary modules to assist in building: We also encapsulates the upper interface for users to start programs quickly and separates the codes and configs for managing hyper-parameters conveniently.

Installation

Pip

pip install gedml

Framework

This project is modular in design. The pipeline diagram is as follows:

Pipeline

Code structure

  • _debug: Debug files.
  • demo: Demos of configuration files.
  • docs: Documentation.
  • src: Source code.
    • core: Losses, selectors, collectors, etc.
    • client: Tmux manager.
    • config: Config files including link, convert, assert and params.
    • launcher: Manager, Trainer, Tester, etc.
    • recorder: Recorder.

Method

Collectors

method description
BaseCollector Base class
DefaultCollector Do nothing
ProxyCollector Maintain a set of proxies
MoCoCollector paper: Momentum Contrast for Unsupervised Visual Representation Learning
SimSiamCollector paper: Exploring Simple Siamese Representation Learning
HDMLCollector paper: Hardness-Aware Deep Metric Learning
DAMLCollector paper: Deep Adversarial Metric Learning
DVMLCollector paper: Deep Variational Metric Learning

Losses

classifier-based

method description
CrossEntropyLoss Cross entropy loss for unsupervised methods
LargeMarginSoftmaxLoss paper: Large-Margin Softmax Loss for Convolutional Neural Networks
ArcFaceLoss paper: ArcFace: Additive Angular Margin Loss for Deep Face Recognition
CosFaceLoss paper: CosFace: Large Margin Cosine Loss for Deep Face Recognition

pair-based

method description
ContrastiveLoss paper: Learning a Similarity Metric Discriminatively, with Application to Face Verification
MarginLoss paper: Sampling Matters in Deep Embedding Learning
TripletLoss paper: Learning local feature descriptors with triplets and shallow convolutional neural networks
AngularLoss paper: Deep Metric Learning with Angular Loss
CircleLoss paper: Circle Loss: A Unified Perspective of Pair Similarity Optimization
FastAPLoss paper: Deep Metric Learning to Rank
LiftedStructureLoss paper: Deep Metric Learning via Lifted Structured Feature Embedding
MultiSimilarityLoss paper: Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning
NPairLoss paper: Improved Deep Metric Learning with Multi-class N-pair Loss Objective
SignalToNoiseRatioLoss paper: Signal-To-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
PosPairLoss paper: Exploring Simple Siamese Representation Learning

proxy-based

method description
ProxyLoss paper: No Fuss Distance Metric Learning Using Proxies
ProxyAnchorLoss paper: Proxy Anchor Loss for Deep Metric Learning
SoftTripleLoss paper: SoftTriple Loss: Deep Metric Learning Without Triplet Sampling

Selectors

method description
BaseSelector Base class
DefaultSelector Do nothing
DenseTripletSelector Select all triples
DensePairSelector Select all pairs

Quickstart

Please set the environment variable WORKSPACE first to indicate where to manage your project.

Initialization

Use ConfigHandler to create all objects.

config_handler = ConfigHandler()
config_handler.get_params_dict()
objects_dict = config_handler.create_all()

Start

Use manager to automatically call trainer and tester.

manager = utils.get_default(objects_dict, "managers")
manager.run()

Directly use trainer and tester.

trainer = utils.get_default(objects_dict, "trainers")
tester = utils.get_default(objects_dict, "testers")
recorder = utils.get_default(objects_dict, "recorders")

# start to train
utils.func_params_mediator(
    [objects_dict],
    trainer.__call__
)

# start to test
metrics = utils.func_params_mediator(
    [
        {"recorders": recorder},
        objects_dict,
    ],
    tester.__call__
)

Document

For more information, please refer to:

📖 👉 Docs

Some specific guidances:

Configs

We will continually update the optimal parameters of different configs in TsinghuaCloud

Code Reference

TODO:

  • assert parameters
  • distributed methods and Non-distributed methods!!!
  • write github action to automate unit-test, package publish and docs building.
  • add cross-validation splits protocol.
Owner
Borui Zhang
I am a first year Ph.D student in the Department of Automation at THU. My research direction is computer vision.
Borui Zhang
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022