Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Related tags

Deep LearningRT-VIBE
Overview

Real-time VIBE

Inference VIBE frame-by-frame.

Overview

This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE].

Usage:

import cv2
from vibe.rt.rt_vibe import RtVibe

rt_vibe = RtVibe()
cap = cv2.VideoCapture('sample_video.mp4')
while cap.isOpened():
    ret, frame = cap.read()
    rt_vibe(frame)  # This will open a cv2 window

SMPL Render takes most of the time, which can be closed with vibe_live.render = False

Getting Started

Installation:

# conda must be installed first
wget https://github.com/zc402/RT-VIBE/releases/download/v1.0.0/RT-VIBE.tar.gz
tar zxf RT-VIBE.tar.gz
cd RT-VIBE
# This will create a new conda env called vibe_env
source scripts/install_conda.sh
pip install .  # Install rt-vibe

Run on sample video:

python rt_demo.py  # (This runs sample_video.mp4)
# or
python rt_demo.py --vid_file=multiperson.mp4

Run on camera:

python rt_demo.py --camera

Try with google colab

This notebook provides video and camera inference example.

(there are some dependency errors during pip install, which is safe to ignore. Remember to restart environment after installing pytorch.)

https://colab.research.google.com/drive/1VKXGTfwIYT-ltbbEjhCpEczGpksb8I7o?usp=sharing

Features

  • Make VIBE an installable package
  • Fix GRU hidden states lost between batches in demo.py
  • Add realtime interface which processes the video stream frame-by-frame
  • Decrease GPU memory usage

Explain

  1. Pip installable.

  • This repo renames "lib" to "vibe" ("lib" is not a feasible package name), corrects corresponding imports, adds __init__.py files. It can be installed with:
pip install git+https://github.com/zc402/RT-VIBE
  1. GRU hidden state lost:

  • The original vibe.py reset GRU memory for each batch, which causes discontinuous predictions.

  • The GRU hidden state is reset at:

# .../models/vibe.py
# class TemporalEncoder
# def forward()
y, _ = self.gru(x)

# The "_" is the final hidden state and should be preserved
# https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
  • This repo preserve GRU hidden state within the lifecycle of the model, instead of one batch.
# Fix:

# __init__()
self.gru_final_hidden = None

# forward()
y, self.gru_final_hidden = self.gru(x, self.gru_final_hidden)
  1. Real-time interface

  • This feature makes VIBE run on webcam.

  • Processing steps of the original VIBE :

    • use ffmpeg to split video into images, save to /tmp
    • process the human tracking for whole video, keep results in memory
    • predict smpl params with VIBE for whole video, 1 person at a time.
    • (optional) render and show (frame by frame)
    • save rendered result
  • Processing steps of realtime interface

    • create VIBE model.
    • read a frame with cv2
    • run tracking for 1 frame
    • predict smpl params for each person, keep the hidden states separately.
    • (optional) render and show
  • Changes

    • Multi-person-tracker is modified to receive image instead of image folder.
    • a dataset wrapper is added to convert single image into a pytorch dataset.
    • a rt_demo.py is added to demonstrate the usage.
    • ImageFolder dataset is modified
    • ImgInference dataset is modified
    • requirements are modified to freeze current tracker version. (Class in my repo inherits the tracker and changes its behavior)
  1. Decrease inference memory usage

  • The default batch_size in demo.py needs ~10GB GPU memory
  • Original demo.py needs large vibe_batch_size to keep GRU hidden states
  • Since the GRU hidden state was fixed now, lowering the memory usage won't harm the accuracy anymore.
  • With the default setting in this repo, inference occupies ~1.3GB memory, which makes it runable on low-end GPU.
  • This will slow down the inference a little. The current setting (batchsize==1) reflect actual realtime processing speed.
# Large batch causes OOM in low-end memory card
tracker_batch_size = 12 -> 1
vibe_batch_size = 450 -> 1

Other fixes

Remove seqlen. The seqlen in demo.py has no usage (GRU sequence length is decided in runtime and equals to batch_size). With the fix in this repo, it is safe to set batch_size to 1.

You might also like...
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

pytorch implementation of openpose including Hand and Body Pose Estimation.
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30 sports-related actions each, for a total of 510 action clips.

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Code for
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Releases(v1.0.0)
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022