Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Related tags

Deep LearningRT-VIBE
Overview

Real-time VIBE

Inference VIBE frame-by-frame.

Overview

This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE].

Usage:

import cv2
from vibe.rt.rt_vibe import RtVibe

rt_vibe = RtVibe()
cap = cv2.VideoCapture('sample_video.mp4')
while cap.isOpened():
    ret, frame = cap.read()
    rt_vibe(frame)  # This will open a cv2 window

SMPL Render takes most of the time, which can be closed with vibe_live.render = False

Getting Started

Installation:

# conda must be installed first
wget https://github.com/zc402/RT-VIBE/releases/download/v1.0.0/RT-VIBE.tar.gz
tar zxf RT-VIBE.tar.gz
cd RT-VIBE
# This will create a new conda env called vibe_env
source scripts/install_conda.sh
pip install .  # Install rt-vibe

Run on sample video:

python rt_demo.py  # (This runs sample_video.mp4)
# or
python rt_demo.py --vid_file=multiperson.mp4

Run on camera:

python rt_demo.py --camera

Try with google colab

This notebook provides video and camera inference example.

(there are some dependency errors during pip install, which is safe to ignore. Remember to restart environment after installing pytorch.)

https://colab.research.google.com/drive/1VKXGTfwIYT-ltbbEjhCpEczGpksb8I7o?usp=sharing

Features

  • Make VIBE an installable package
  • Fix GRU hidden states lost between batches in demo.py
  • Add realtime interface which processes the video stream frame-by-frame
  • Decrease GPU memory usage

Explain

  1. Pip installable.

  • This repo renames "lib" to "vibe" ("lib" is not a feasible package name), corrects corresponding imports, adds __init__.py files. It can be installed with:
pip install git+https://github.com/zc402/RT-VIBE
  1. GRU hidden state lost:

  • The original vibe.py reset GRU memory for each batch, which causes discontinuous predictions.

  • The GRU hidden state is reset at:

# .../models/vibe.py
# class TemporalEncoder
# def forward()
y, _ = self.gru(x)

# The "_" is the final hidden state and should be preserved
# https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
  • This repo preserve GRU hidden state within the lifecycle of the model, instead of one batch.
# Fix:

# __init__()
self.gru_final_hidden = None

# forward()
y, self.gru_final_hidden = self.gru(x, self.gru_final_hidden)
  1. Real-time interface

  • This feature makes VIBE run on webcam.

  • Processing steps of the original VIBE :

    • use ffmpeg to split video into images, save to /tmp
    • process the human tracking for whole video, keep results in memory
    • predict smpl params with VIBE for whole video, 1 person at a time.
    • (optional) render and show (frame by frame)
    • save rendered result
  • Processing steps of realtime interface

    • create VIBE model.
    • read a frame with cv2
    • run tracking for 1 frame
    • predict smpl params for each person, keep the hidden states separately.
    • (optional) render and show
  • Changes

    • Multi-person-tracker is modified to receive image instead of image folder.
    • a dataset wrapper is added to convert single image into a pytorch dataset.
    • a rt_demo.py is added to demonstrate the usage.
    • ImageFolder dataset is modified
    • ImgInference dataset is modified
    • requirements are modified to freeze current tracker version. (Class in my repo inherits the tracker and changes its behavior)
  1. Decrease inference memory usage

  • The default batch_size in demo.py needs ~10GB GPU memory
  • Original demo.py needs large vibe_batch_size to keep GRU hidden states
  • Since the GRU hidden state was fixed now, lowering the memory usage won't harm the accuracy anymore.
  • With the default setting in this repo, inference occupies ~1.3GB memory, which makes it runable on low-end GPU.
  • This will slow down the inference a little. The current setting (batchsize==1) reflect actual realtime processing speed.
# Large batch causes OOM in low-end memory card
tracker_batch_size = 12 -> 1
vibe_batch_size = 450 -> 1

Other fixes

Remove seqlen. The seqlen in demo.py has no usage (GRU sequence length is decided in runtime and equals to batch_size). With the fix in this repo, it is safe to set batch_size to 1.

You might also like...
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

pytorch implementation of openpose including Hand and Body Pose Estimation.
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30 sports-related actions each, for a total of 510 action clips.

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Code for
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Releases(v1.0.0)
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022